Home Common therapeutic strategies for prion and Alzheimer’s diseases
Article
Licensed
Unlicensed Requires Authentication

Common therapeutic strategies for prion and Alzheimer’s diseases

  • Saioa R. Elezgarai EMAIL logo and Emiliano Biasini EMAIL logo
Published/Copyright: June 8, 2016

Abstract

A number of unexpected pathophysiological connections linking different neurodegenerative diseases have emerged over the past decade. An example is provided by prion and Alzheimer’s diseases. Despite being distinct pathologies, these disorders share several neurotoxic mechanisms, including accumulation of misfolded protein isoforms, stress of the protein synthesis machinery, and activation of a neurotoxic signaling mediated by the cellular prion protein. Here, in addition to reviewing these mechanisms, we will discuss the potential therapeutic interventions for prion and Alzheimer’s diseases that are arising from the comprehension of their common neurodegenerative pathways.

Acknowledgments

This study was supported by a Young Investigator Award from the Italian Ministry of Health, to EB (GR-2010-2312769). SRE was supported by a grant from the E-Rare Joint Transnational Call (E-Rare-2). EB is an Assistant Telethon Scientist at the Dulbecco Telethon Institute (TCP14009, Fondazione Telethon, Italy).

References

Aimi, T., Suzuki, K., Hoshino, T., and Mizushima, T. (2015). Dextran sulfate sodium inhibits amyloid-β oligomer binding to cellular prion protein. J. Neurochem. 134, 611–617.10.1111/jnc.13166Search in Google Scholar PubMed

Allinson, T.M., Parkin, E.T., Condon, T.P., Schwager, S.L., Sturrock, E.D., Turner, A.J., and Hooper, N.M. (2004). The role of ADAM10 and ADAM17 in the ectodomain shedding of angiotensin converting enzyme and the amyloid precursor protein. Eur. J. Biochem. 271, 2539–2547.10.1111/j.1432-1033.2004.04184.xSearch in Google Scholar PubMed

Altmeppen, H.C., Puig, B., Dohler, F., Thurm, D.K., Falker, C., Krasemann, S., and Glatzel, M. (2012). Proteolytic processing of the prion protein in health and disease. Am. J. Neurodegener. Dis. 1, 15–31.Search in Google Scholar

Altmeppen, H.C., Prox, J., Krasemann, S., Puig, B., Kruszewski, K., Dohler, F., Bernreuther, C., Hoxha, A., Linsenmeier, L., Sikorska, B., et al. (2015). The sheddase ADAM10 is a potent modulator of prion disease. eLife 4.10.7554/eLife.04260Search in Google Scholar PubMed PubMed Central

Balducci, C., Beeg, M., Stravalaci, M., Bastone, A., Sclip, A., Biasini, E., Tapella, L., Colombo, L., Manzoni, C., Borsello, T., et al. (2010). Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc. Natl. Acad. Sci. USA 107, 2295–2300.10.1073/pnas.0911829107Search in Google Scholar PubMed PubMed Central

Biasini, E., Turnbaugh, J.A., Unterberger, U., and Harris, D.A. (2012). Prion protein at the crossroads of physiology and disease. Trends Neurosci. 35, 92–103.10.1016/j.tins.2011.10.002Search in Google Scholar PubMed PubMed Central

Brandner, S., Isenmann, S., Raeber, A., Fischer, M., Sailer, A., Kobayashi, Y., Marino, S., Weissmann, C., and Aguzzi, A. (1996). Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature 379, 339–343.10.1038/379339a0Search in Google Scholar PubMed

Bremer, J., Baumann, F., Tiberi, C., Wessig, C., Fischer, H., Schwarz, P., Steele, A.D., Toyka, K.V., Nave, K.A., Weis, J., et al. (2010). Axonal prion protein is required for peripheral myelin maintenance. Nat. Neurosci. 13, 310–318.10.1038/nn.2483Search in Google Scholar PubMed

Calella, A.M., Farinelli, M., Nuvolone, M., Mirante, O., Moos, R., Falsig, J., Mansuy, I.M., and Aguzzi, A. (2010). Prion protein and Abeta-related synaptic toxicity impairment. EMBO Mol. Med. 2, 306–314.10.1002/emmm.201000082Search in Google Scholar PubMed PubMed Central

Chen, S., Yadav, S.P., and Surewicz, W.K. (2010). Interaction between human prion protein and amyloid-β (Aβ) oligomers: role OF N-terminal residues. J. Biol. Chem. 285, 26377–26383.10.1074/jbc.M110.145516Search in Google Scholar PubMed PubMed Central

Chen, R.J., Chang, W.W., Lin, Y.C., Cheng, P.L., and Chen, Y.R. (2013). Alzheimer’s amyloid-beta oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway. ACS Chem. Neurosci. 4, 1287–1296.10.1021/cn400085qSearch in Google Scholar PubMed PubMed Central

Chiti, F. and Dobson, C.M. (2006). Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366.10.1146/annurev.biochem.75.101304.123901Search in Google Scholar PubMed

Cisse, M., Sanchez, P.E., Kim, D.H., Ho, K., Yu, G.Q., and Mucke, L. (2011). Ablation of cellular prion protein does not ameliorate abnormal neural network activity or cognitive dysfunction in the J20 line of human amyloid precursor protein transgenic mice. J. Neurosci. 31, 10427–10431.10.1523/JNEUROSCI.1459-11.2011Search in Google Scholar PubMed PubMed Central

Devi, L.and Ohno, M. (2016). Cognitive benefits of memantine in Alzheimer’s 5XFAD model mice decline during advanced disease stages. Pharmacol. Biochem. Behav. 144, 60–66.10.1016/j.pbb.2016.03.002Search in Google Scholar PubMed

Dohler, F., Sepulveda-Falla, D., Krasemann, S., Altmeppen, H., Schluter, H., Hildebrand, D., Zerr, I., Matschke, J., and Glatzel, M. (2014). High molecular mass assemblies of amyloid-β oligomers bind prion protein in patients with Alzheimer’s disease. Brain 137, 873–886.10.1093/brain/awt375Search in Google Scholar PubMed

Endres, K., Fahrenholz, F., Lotz, J., Hiemke, C., Teipel, S., Lieb, K., Tuscher, O., and Fellgiebel, A. (2014). Increased CSF APPs-alpha levels in patients with Alzheimer disease treated with acitretin. Neurology 83, 1930–1935.10.1212/WNL.0000000000001017Search in Google Scholar PubMed

Fluharty, B.R., Biasini, E., Stravalaci, M., Sclip, A., Diomede, L., Balducci, C., La Vitola, P., Messa, M., Colombo, L., Forloni, G., et al. (2013). An N-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo. J. Biol. Chem. 288, 7857–7866.10.1074/jbc.M112.423954Search in Google Scholar PubMed PubMed Central

Freeman, O.J. and Mallucci, G.R. (2016). The UPR and synaptic dysfunction in neurodegeneration. Brain Res. pii: S0006-8993(16)30162-7. Doi: 10.1016/j.brainres.2016.03.029. [Epub ahead of print].10.1016/j.brainres.2016.03.029Search in Google Scholar PubMed

Gimbel, D.A., Nygaard, H.B., Coffey, E.E., Gunther, E.C., Lauren, J., Gimbel, Z.A., and Strittmatter, S.M. (2010). Memory impairment in transgenic Alzheimer mice requires cellular prion protein. J. Neurosci. 30, 6367–6374.10.1523/JNEUROSCI.0395-10.2010Search in Google Scholar PubMed PubMed Central

Haass, C. and Selkoe, D.J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nat. Rev. Mol. Cell Biol. 8, 101–112.10.1038/nrm2101Search in Google Scholar PubMed

Halliday, M., Radford, H., and Mallucci, G.R. (2014). Prions: generation and spread versus neurotoxicity. J. Biol. Chem. 289, 19862–19868.10.1074/jbc.R114.568477Search in Google Scholar PubMed PubMed Central

Halliday, M., Radford, H., Sekine, Y., Moreno, J., Verity, N., le Quesne, J., Ortori, C.A., Barrett, D.A., Fromont, C., Fischer, P.M., et al. (2015). Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 6, e1672.10.1038/cddis.2015.49Search in Google Scholar

Harding, H.P., Zhang, Y., and Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397, 271–274.10.1038/16729Search in Google Scholar

Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., and Ron, D. (2000). Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6, 1099–1108.10.1016/S1097-2765(00)00108-8Search in Google Scholar

Hardy, J. and Selkoe, D.J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297, 353–356.10.1126/science.1072994Search in Google Scholar PubMed

Harris, D.A., Huber, M.T., van Dijken, P., Shyng, S.L., Chait, B.T., and Wang, R. (1993). Processing of a cellular prion protein: identification of N- and C-terminal cleavage sites. Biochemistry 32, 1009–1016.10.1021/bi00055a003Search in Google Scholar PubMed

Haurwitz, R.E., Jinek, M., Wiedenheft, B., Zhou, K., and Doudna, J.A. (2010). Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329, 1355–1358.10.1126/science.1192272Search in Google Scholar PubMed PubMed Central

Hooper, N.M., Taylor, D.R., and Watt, N.T. (2008). Mechanism of the metal-mediated endocytosis of the prion protein. Biochem. Soc. Trans. 36, 1272–1276.10.1042/BST0361272Search in Google Scholar PubMed

Hu, N.W., Nicoll, A.J., Zhang, D., Mably, A.J., O’Malley, T., Purro, S.A., Terry, C., Collinge, J., Walsh, D.M., and Rowan, M.J. (2014). mGlu5 receptors and cellular prion protein mediate amyloid-β-facilitated synaptic long-term depression in vivo. Nat. Commun. 5, 3374.10.1038/ncomms4374Search in Google Scholar PubMed PubMed Central

Kaufman, A.C., Salazar, S.V., Haas, L.T., Yang, J., Kostylev, M.A., Jeng, A.T., Robinson, S.A., Gunther, E.C., van Dyck, C.H., Nygaard, H.B., et al. (2015). Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann. Neurol. 77, 953–971.10.1002/ana.24394Search in Google Scholar PubMed PubMed Central

Kawasaki, Y., Kawagoe, K., Chen, C.J., Teruya, K., Sakasegawa, Y., and Doh-ura, K. (2007). Orally administered amyloidophilic compound is effective in prolonging the incubation periods of animals cerebrally infected with prion diseases in a prion strain-dependent manner. J. Virol. 81, 12889–12898.10.1128/JVI.01563-07Search in Google Scholar PubMed PubMed Central

Kessels, H.W., Nguyen, L.N., Nabavi, S., and Malinow, R. (2010). The prion protein as a receptor for amyloid-β. Nature 466, E3–E4; discussion E4–E5.10.1038/nature09217Search in Google Scholar PubMed PubMed Central

Klyubin, I., Nicoll, A.J., Khalili-Shirazi, A., Farmer, M., Canning, S., Mably, A., Linehan, J., Brown, A., Wakeling, M., Brandner, S., et al. (2014). Peripheral administration of a humanized anti-PrP antibody blocks Alzheimer’s disease Aβ synaptotoxicity. J. Neurosci. 34, 6140–6145.10.1523/JNEUROSCI.3526-13.2014Search in Google Scholar PubMed PubMed Central

Kuhn, P.H., Colombo, A.V., Schusser, B., Dreymueller, D., Wetzel, S., Schepers, U., Herber, J., Ludwig, A., Kremmer, E., Montag, D., et al. (2016). Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 5.10.7554/eLife.12748.016Search in Google Scholar

Kumar, A., Dhull, D.K., and Mishra, P.S. (2015). Therapeutic potential of mGluR5 targeting in Alzheimer’s disease. Front Neurosci. 9, 215.10.3389/fnins.2015.00215Search in Google Scholar PubMed PubMed Central

Kuo, C.Y. and Kohn, D.B. (2016). Gene therapy for the treatment of primary immune deficiencies. Curr. Allergy Asthma Rep. 16, 39.10.1007/s11882-016-0615-8Search in Google Scholar PubMed PubMed Central

Lai, E., Teodoro, T., and Volchuk, A. (2007). Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22, 193–201.10.1152/physiol.00050.2006Search in Google Scholar PubMed

Larson, M., Sherman, M.A., Amar, F., Nuvolone, M., Schneider, J.A., Bennett, D.A., Aguzzi, A., and Lesne, S.E. (2012). The complex PrP(c)-Fyn couples human oligomeric Aβ with pathological tau changes in Alzheimer’s disease. J. Neurosci. 32, 16857–16871a.10.1523/JNEUROSCI.1858-12.2012Search in Google Scholar PubMed PubMed Central

Lauren, J., Gimbel, D.A., Nygaard, H.B., Gilbert, J.W., and Strittmatter, S.M. (2009). Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 457, 1128–1132.10.1038/nature07761Search in Google Scholar PubMed PubMed Central

Lee, H.B., Sundberg, B.N., Sigafoos, A.N., and Clark, K.J. (2016). Genome engineering with TALE and CRISPR systems in neuroscience. Front Genet. 7, 47.10.3389/fgene.2016.00047Search in Google Scholar PubMed PubMed Central

Maeder, M.L. and Gersbach, C.A. (2016). Genome-editing Technologies for Gene and Cell Therapy. Mol. Ther. 24, 430–446.10.1038/mt.2016.10Search in Google Scholar PubMed PubMed Central

Mallucci, G., Dickinson, A., Linehan, J., Klohn, P.C., Brandner, S., and Collinge, J. (2003). Depleting neuronal PrP in prion infection prevents disease and reverses spongiosis. Science 302, 871–874.10.1126/science.1090187Search in Google Scholar

Massignan, T., Cimini, S., Stincardini, C., Cerovic, M., Vanni, I., Elezgarai, S.R., Moreno, J., Stravalaci, M., Negro, A., Sangiovanni, V., et al. (2016). A cationic tetrapyrrole inhibits toxic activities of the cellular prion protein. Sci. Rep. 6, 23180.10.1038/srep23180Search in Google Scholar

Matsunaga, S., Kishi, T., and Iwata, N. (2015). Memantine monotherapy for Alzheimer’s disease: a systematic review and meta-analysis. PLoS One 10, e0123289.10.1371/journal.pone.0123289Search in Google Scholar

Matus, S., Lisbona, F., Torres, M., Leon, C., Thielen, P., and Hetz, C. (2008). The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr. Mol. Med. 8, 157–172.10.2174/156652408784221324Search in Google Scholar

Mehrabian, M., Brethour, D., MacIsaac, S., Kim, J.K., Gunawardana, C.G., Wang, H., and Schmitt-Ulms, G. (2014). CRISPR-Cas9-based knockout of the prion protein and its effect on the proteome. PLoS One 9, e114594.10.1371/journal.pone.0114594Search in Google Scholar

Meier, P., Genoud, N., Prinz, M., Maissen, M., Rulicke, T., Zurbriggen, A., Raeber, A.J., and Aguzzi, A. (2003). Soluble dimeric prion protein binds PrP(Sc) in vivo and antagonizes prion disease. Cell 113, 49–60.10.1016/S0092-8674(03)00201-0Search in Google Scholar

Merkert, S. and Martin, U. (2016). Targeted genome engineering using designer nucleases: State of the art and practical guidance for application in human pluripotent stem cells. Stem Cell Res. 16, 377–386.10.1016/j.scr.2016.02.027Search in Google Scholar PubMed

Minikel, E.V., Vallabh, S.M., Lek, M., Estrada, K., Samocha, K.E., Sathirapongsasuti, J.F., McLean, C.Y., Tung, J.Y., Yu, L.P., Gambetti, P., et al. (2016). Quantifying prion disease penetrance using large population control cohorts. Sci. Transl. Med. 8, 322ra329.10.1126/scitranslmed.aad5169Search in Google Scholar PubMed PubMed Central

Moreno, J.A. and Mallucci, G.R. (2010). Dysfunction and recovery of synapses in prion disease: implications for neurodegeneration. Biochem. Soc. Trans. 38, 482–487.10.1042/BST0380482Search in Google Scholar PubMed

Moreno, J.A., Radford, H., Peretti, D., Steinert, J.R., Verity, N., Martin, M.G., Halliday, M., Morgan, J., Dinsdale, D., Ortori, C.A., et al. (2012). Sustained translational repression by eIF2alpha-P mediates prion neurodegeneration. Nature 485, 507–511.10.1038/nature11058Search in Google Scholar PubMed PubMed Central

Mouillet-Richard, S., Ermonval, M., Chebassier, C., Laplanche, J.L., Lehmann, S., Launay, J.M., and Kellermann, O. (2000). Signal transduction through prion protein. Science 289, 1925–1928.10.1126/science.289.5486.1925Search in Google Scholar PubMed

Nickols, H.H., Yuh, J.P., Gregory, K.J., Morrison, R.D., Bates, B.S., Stauffer, S.R., Emmitte, K.A., Bubser, M., Peng, W., Nedelcovych, M.T., et al. (2016). VU0477573: partial negative allosteric modulator of the subtype 5 metabotropic glutamate receptor with in vivo efficacy. J. Pharmacol. Exp. Ther. 356, 123–136.10.1124/jpet.115.226597Search in Google Scholar PubMed PubMed Central

Nicoll, A.J., Trevitt, C.R., Tattum, M.H., Risse, E., Quarterman, E., Ibarra, A.A., Wright, C., Jackson, G.S., Sessions, R.B., Farrow, M., et al. (2010). Pharmacological chaperone for the structured domain of human prion protein. Proc. Natl. Acad. Sci. USA 107, 17610–17615.10.1073/pnas.1009062107Search in Google Scholar PubMed PubMed Central

Nicoll, A.J., Panico, S., Freir, D.B., Wright, D., Terry, C., Risse, E., Herron, C.E., O’Malley, T., Wadsworth, J.D., Farrow, et al. (2013). Amyloid-β nanotubes are associated with prion protein-dependent synaptotoxicity. Nat. Commun. 4, 2416.10.1038/ncomms3416Search in Google Scholar PubMed PubMed Central

Nygaard, H.B., van Dyck, C.H., and Strittmatter, S.M. (2014). Fyn kinase inhibition as a novel therapy for Alzheimer’s disease. Alzheimers Res. Ther. 6, 8.10.1186/alzrt238Search in Google Scholar PubMed PubMed Central

Nygaard, H.B., Wagner, A.F., Bowen, G.S., Good, S.P., MacAvoy, M.G., Strittmatter, K.A., Kaufman, A.C., Rosenberg, B.J., Sekine-Konno, T., Varma, P., et al. (2015). A phase Ib multiple ascending dose study of the safety, tolerability, and central nervous system availability of AZD0530 (saracatinib) in Alzheimer’s disease. Alzheimers Res. Ther. 7, 35.10.1186/s13195-015-0119-0Search in Google Scholar PubMed PubMed Central

Onodera, T., Sakudo, A., Tsubone, H., and Itohara, S. (2014). Review of studies that have used knockout mice to assess normal function of prion protein under immunological or pathophysiological stress. Microbiol. Immunol. 58, 361–374.10.1111/1348-0421.12162Search in Google Scholar PubMed

Parkin, E.T., Watt, N.T., Turner, A.J., and Hooper, N.M. (2004). Dual mechanisms for shedding of the cellular prion protein. J. Biol. Chem. 279, 11170–11178.10.1074/jbc.M312105200Search in Google Scholar PubMed

Poncet-Montange, G., St Martin, S.J., Bogatova, O.V., Prusiner, S.B., Shoichet, B.K., and Ghaemmaghami, S. (2011). A survey of antiprion compounds reveals the prevalence of non-PrP molecular targets. J. Biol. Chem. 286, 27718–27728.10.1074/jbc.M111.234393Search in Google Scholar PubMed PubMed Central

Prusiner, S.B. (2013). Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623.10.1146/annurev-genet-110711-155524Search in Google Scholar PubMed PubMed Central

Rammes, G., Hasenjager, A., Sroka-Saidi, K., Deussing, J.M., and Parsons, C.G. (2011). Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 metabotropic glutamate receptors in mediating the synaptotoxic effects of beta-amyloid oligomers on long-term potentiation (LTP) in murine hippocampal slices. Neuropharmacology 60, 982–990.10.1016/j.neuropharm.2011.01.051Search in Google Scholar

Risse, E., Nicoll, A.J., Taylor, W.A., Wright, D., Badoni, M., Yang, X., Farrow, M.A., and Collinge, J. (2015). Identification of a compound that disrupts binding of amyloid-β to the prion protein using a novel fluorescence-based assay. J. Biol. Chem. 290, 17020–17028.10.1074/jbc.M115.637124Search in Google Scholar

Rushworth, J.V., Griffiths, H.H., Watt, N.T., and Hooper, N.M. (2013). Prion protein-mediated toxicity of amyloid-beta oligomers requires lipid rafts and the transmembrane LRP1. J. Biol. Chem. 288, 8935–8951.10.1074/jbc.M112.400358Search in Google Scholar

Saftig, P. and Lichtenthaler, S.F. (2015). The α secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog. Neurobiol. 135, 1–20.10.1016/j.pneurobio.2015.10.003Search in Google Scholar

Sagare, A.P., Bell, R.D., Srivastava, A., Sengillo, J.D., Singh, I., Nishida, Y., Chow, N., and Zlokovic, B.V. (2013). A lipoprotein receptor cluster IV mutant preferentially binds amyloid-β and regulates its clearance from the mouse brain. J. Biol. Chem. 288, 15154–15166.10.1074/jbc.M112.439570Search in Google Scholar

Scott-McKean, J.J., Surewicz, K., Choi, J.K., Ruffin, V.A., Salameh, A.I., Nieznanski, K., Costa, A.C., and Surewicz, W.K. (2016). Soluble prion protein and its N-terminal fragment prevent impairment of synaptic plasticity by Aβ oligomers: implications for novel therapeutic strategy in Alzheimer’s disease. Neurobiol. Dis. 91, 124–131.10.1016/j.nbd.2016.03.001Search in Google Scholar

Sempou, E., Biasini, E., Pinzon-Olejua, A., Harris, D.A., and Malaga-Trillo, E. (2016). Activation of zebrafish Src family kinases by the prion protein is an amyloid-beta-sensitive signal that prevents the endocytosis and degradation of E-cadherin/β-catenin complexes in vivo. Mol. Neurodegener. 11, 18.10.1186/s13024-016-0076-5Search in Google Scholar

Shyng, S.L., Huber, M.T., and Harris, D.A. (1993). A prion protein cycles between the cell surface and an endocytic compartment in cultured neuroblastoma cells. J. Biol. Chem. 268, 15922–15928.10.1016/S0021-9258(18)82340-7Search in Google Scholar

Shyng, S.L., Heuser, J.E., and Harris, D.A. (1994). A glycolipid-anchored prion protein is endocytosed via clathrin-coated pits. J. Cell Biol. 125, 1239–1250.10.1083/jcb.125.6.1239Search in Google Scholar PubMed PubMed Central

Shyng, S.L., Lehmann, S., Moulder, K.L., and Harris, D.A. (1995a). Sulfated glycans stimulate endocytosis of the cellular isoform of the prion protein, PrPC, in cultured cells. J. Biol. Chem. 270, 30221–30229.10.1074/jbc.270.50.30221Search in Google Scholar PubMed

Shyng, S.L., Moulder, K.L., Lesko, A., and Harris, D.A. (1995b). The N-terminal domain of a glycolipid-anchored prion protein is essential for its endocytosis via clathrin-coated pits. J. Biol. Chem. 270, 14793–14800.10.1074/jbc.270.24.14793Search in Google Scholar PubMed

Sim, V.L. (2012). Prion disease: chemotherapeutic strategies. Infect. Disord. Drug. Targets 12, 144–160.10.2174/187152612800100161Search in Google Scholar PubMed

Sonati, T., Reimann, R.R., Falsig, J., Baral, P.K., O’Connor, T., Hornemann, S., Yaganoglu, S., Li, B., Herrmann, U.S., Wieland, B., et al. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 501, 102–106.10.1038/nature12402Search in Google Scholar PubMed

Sunyach, C., Cisse, M.A., da Costa, C.A., Vincent, B., and Checler, F. (2007). The C-terminal products of cellular prion protein processing, C1 and C2, exert distinct influence on p53-dependent staurosporine-induced caspase-3 activation. J. Biol. Chem. 282, 1956–1963.10.1074/jbc.M609663200Search in Google Scholar PubMed

Um, J.W. and Strittmatter, S.M. (2013). Amyloid-β induced signaling by cellular prion protein and Fyn kinase in Alzheimer disease. Prion 7, 37–41.10.4161/pri.22212Search in Google Scholar PubMed PubMed Central

Um, J.W., Nygaard, H.B., Heiss, J.K., Kostylev, M.A., Stagi, M., Vortmeyer, A., Wisniewski, T., Gunther, E.C., and Strittmatter, S.M. (2012). Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 15, 1227–1235.10.1038/nn.3178Search in Google Scholar PubMed PubMed Central

Um, J.W., Kaufman, A.C., Kostylev, M., Heiss, J.K., Stagi, M., Takahashi, H., Kerrisk, M.E., Vortmeyer, A., Wisniewski, T., Koleske, A.J., et al. (2013). Metabotropic glutamate receptor 5 is a coreceptor for Alzheimer abeta oligomer bound to cellular prion protein. Neuron 79, 887–902.10.1016/j.neuron.2013.06.036Search in Google Scholar PubMed PubMed Central

Verity, N.C. and Mallucci, G.R. (2011). Rescuing neurons in prion disease. Biochem. J. 433, 19–29.10.1042/BJ20101323Search in Google Scholar PubMed

Walters, B.J., Azam, A.B., Gillon, C.J., Josselyn, S.A., and Zovkic, I.B. (2015). Advanced in vivo use of CRISPR/Cas9 and anti-sense DNA inhibition for gene manipulation in the brain. Front Genet. 6, 362.10.3389/fgene.2015.00362Search in Google Scholar PubMed PubMed Central

White, M.D., Farmer, M., Mirabile, I., Brandner, S., Collinge, J., and Mallucci, G.R. (2008). Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. Proc. Natl. Acad. Sci. USA 105, 10238–10243.10.1073/pnas.0802759105Search in Google Scholar PubMed PubMed Central

Wu, G.M. and Hou, X.Y. (2010). Oligomerized Abeta25–35 induces increased tyrosine phosphorylation of NMDA receptor subunit 2A in rat hippocampal CA1 subfield. Brain Res. 1343, 186–193.10.1016/j.brainres.2010.04.055Search in Google Scholar PubMed

Xue-Shan, Z., Juan, P., Qi, W., Zhong, R., Li-Hong, P., Zhi-Han, T., Zhi-Sheng, J., Gui-Xue, W., and Lu-Shan, L. (2016). Imbalanced cholesterol metabolism in Alzheimer’s disease. Clin. Chim. Acta. 456, 107–114.10.1016/j.cca.2016.02.024Search in Google Scholar PubMed

Zhang, J.H., Pandey, M., Kahler, J.F., Loshakov, A., Harris, B., Dagur, P.K., Mo, Y.Y., and Simonds, W.F. (2014). Improving the specificity and efficacy of CRISPR/CAS9 and gRNA through target specific DNA reporter. J. Biotechnol. 189, 1–8.10.1016/j.jbiotec.2014.08.033Search in Google Scholar PubMed PubMed Central

Received: 2016-4-27
Accepted: 2016-6-3
Published Online: 2016-6-8
Published in Print: 2016-11-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2016-0190/html
Scroll to top button