Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2′,3,4,4′-tetramethoxychalcones α-Br-TMC and α-CF3-TMC
-
Belinda Jobst
Abstract
The JAK/STAT pathway is an essential mediator of cytokine signaling, often upregulated in human diseases and therefore recognized as a relevant therapeutic target. We previously identified the synthetic chalcone α-bromo-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK2/STAT5 inhibitor. We also found that treatment with α-Br-TMC resulted in a downward shift of STAT5 proteins in SDS-PAGE, suggesting a post-translational modification that might affect STAT5 function. In the present study, we show that a single cysteine within STAT5 is responsible for the α-Br-TMC-induced protein shift, and that this modification does not alter STAT5 transcriptional activity. We also compared the inhibitory activity of α-Br-TMC to that of another synthetic chalcone, α-trifluoromethyl-2′,3,4,4′-tetramethoxychalcone (α-CF3-TMC). We found that, like α-Br-TMC, α-CF3-TMC inhibits JAK2 and STAT5 phosphorylation in response to interleukin-3, however without altering STAT5 mobility in SDS-PAGE. Moreover, we demonstrate that both α-Br-TMC and α-CF3-TMC inhibit interferon-α-induced activation of STAT1 and STAT2, by inhibiting their phosphorylation and the expression of downstream interferon-stimulated genes. Together with the previous finding that α-Br-TMC and α-CF3-TMC inhibit the response to inflammation by inducing Nrf2 and blocking NF-κB activities, our data suggest that synthetic chalcones might be useful as anti-inflammatory, anti-cancer and immunomodulatory agents in the treatment of human diseases.
Acknowledgments
We thank Jacqueline Marvel and Daniela Männel for providing the Ba/F3 and HeLa cells, respectively. We thank Elisabeth Besl and Susanne Brüggemann for their excellent technical support. We are grateful to Joachim Griesenbeck for critically reading the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (Grant No. RA 2010/2-1 to A.R.), the Deutsche Krebshilfe (Grant No. 109750 to A.R.), institutional research funds, University of Regensburg (Förderlinie C to A.R.; Frauenförderung, Bayerisches Programm zur Realisierung der Chancengleichheit für Frauen in Forschung und Lehre, to S.P.), and the Fonds der Chemischen Industrie (Liebig scholarship to S.A.).
References
Albert, T., Wells, J., Funk, J.O., Pullner, A., Raschke, E.E., Stelzer, G., Meisterernst, M., Farnham, P.J., and Eick, D. (2001). The chromatin structure of the dual c-myc promoter P1/P2 is regulated by separate elements. J. Biol. Chem. 276, 20482–20490.10.1074/jbc.M100265200Suche in Google Scholar PubMed
Al-Rifai, N., Rücker, H., and Amslinger, S. (2013). Opening or closing the lock? When reactivity is the key to biological activity. Chem. Eur. J. 19, 15384–15395.10.1002/chem.201302117Suche in Google Scholar PubMed
Amslinger, S. (2010). The tunable functionality of α,β-unsaturated carbonyl compounds enables their differential application in biological systems. ChemMedChem 5, 351–356.10.1002/cmdc.200900499Suche in Google Scholar PubMed
Amslinger, S., Al-Rifai, N., Winter, K., Wörmann, K., Scholz, R., Baumeister, P., and Wild, M. (2013). Reactivity assessment of chalcones by a kinetic thiol assay. Org. Biomol. Chem. 11, 549–554.10.1039/C2OB27163JSuche in Google Scholar
Barash, I. (2006). Stat5 in the mammary gland: controlling normal development and cancer. J. Cell. Physiol. 209, 305–313.10.1002/jcp.20771Suche in Google Scholar PubMed
Basham, B., Sathe, M., Grein, J., McClanahan, T., D’Andrea, A., Lees, E., and Rascle, A. (2008). In vivo identification of novel STAT5 target genes. Nucleic Acids Res. 36, 3802–3818.10.1093/nar/gkn271Suche in Google Scholar PubMed PubMed Central
Batovska, D.I. and Todorova, I.T. (2010). Trends in utilization of the pharmacological potential of chalcones. Curr. Clin. Pharmacol. 5, 1–29.10.2174/157488410790410579Suche in Google Scholar PubMed
Bowman, T., Garcia, R., Turkson, J., and Jove, R. (2000). STATs in oncogenesis. Oncogene 19, 2474–2488.10.1038/sj.onc.1203527Suche in Google Scholar PubMed
Britto, P.J., Knipling, L., and Wolff, J. (2002). The local electrostatic environment determines cysteine reactivity of tubulin. J. Biol. Chem. 277, 29018–29027.10.1074/jbc.M204263200Suche in Google Scholar PubMed
Butturini, E., Cavalieri, E., de Prati, A.C., Darra, E., Rigo, A., Shoji, K., Murayama, N., Yamazaki, H., Watanabe, Y., Suzuki, H., et al. (2011). Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PLoS One 6, e20174.10.1371/journal.pone.0020174Suche in Google Scholar PubMed PubMed Central
Butturini, E., Carcereri de Prati, A., Chiavegato, G., Rigo, A., Cavalieri, E., Darra, E., and Mariotto, S. (2013). Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoural cells to chemotherapeutic drugs. Free Radic. Biol. Med. 65, 1322–1330.10.1016/j.freeradbiomed.2013.09.015Suche in Google Scholar
Chang, H.-M., Paulson, M., Holko, M., Rice, C.M., Williams, B.R.G., Marié, I., and Levy, D.E. (2004). Induction of interferon-stimulated gene expression and antiviral responses require protein deacetylase activity. Proc. Natl. Acad. Sci. USA 101, 9578–9583.10.1073/pnas.0400567101Suche in Google Scholar
Cheon, H., Holvey-Bates, E.G., Schoggins, J.W., Forster, S., Hertzog, P., Imanaka, N., Rice, C.M., Jackson, M.W., Junk, D.J., and Stark, G.R. (2013). IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 32, 2751–2763.10.1038/emboj.2013.203Suche in Google Scholar
Cho, Y.-C., Kim, H.J., Kim, Y.-J., Lee, K.Y., Choi, H.J., Lee, I.-S., and Kang, B.Y. (2008). Differential anti-inflammatory pathway by xanthohumol in IFN-gamma and LPS-activated macrophages. Int. Immunopharmacol. 8, 567–573.10.1016/j.intimp.2007.12.017Suche in Google Scholar
Chua, A.W.L., Hay, H.S., Rajendran, P., Shanmugam, M.K., Li, F., Bist, P., Koay, E.S.C., Lim, L.H.K., Kumar, A.P., and Sethi, G. (2010). Butein downregulates chemokine receptor CXCR4 expression and function through suppression of NF-κB activation in breast and pancreatic tumor cells. Biochem. Pharmacol. 80, 1553–1562.10.1016/j.bcp.2010.07.045Suche in Google Scholar
Cui, K., Tailor, P., Liu, H., Chen, X., Ozato, K., and Zhao, K. (2004). The chromatin-remodeling BAF complex mediates cellular antiviral activities by promoter priming. Mol. Cell. Biol. 24, 4476–4486.10.1128/MCB.24.10.4476-4486.2004Suche in Google Scholar
Der, S.D., Zhou, A., Williams, B.R., and Silverman, R.H. (1998). Identification of genes differentially regulated by interferon α, β, or γ using oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95, 15623–15628.10.1073/pnas.95.26.15623Suche in Google Scholar
Dinkova-Kostova, A.T., Holtzclaw, W.D., Cole, R.N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., and Talalay, P. (2002). Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99, 11908–11913.10.1073/pnas.172398899Suche in Google Scholar
DiSanto, J.P. (1997). Cytokines: shared receptors, distinct functions. Curr. Biol. 7, R424–426.10.1016/S0960-9822(06)00208-9Suche in Google Scholar
Dunn, G.P., Koebel, C.M., and Schreiber, R.D. (2006). Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848.10.1038/nri1961Suche in Google Scholar PubMed
Funakoshi-Tago, M., Tago, K., Nishizawa, C., Takahashi, K., Mashino, T., Iwata, S., Inoue, H., Sonoda, Y., and Kasahara, T. (2008). Licochalcone A is a potent inhibitor of TEL-Jak2-mediated transformation through the specific inhibition of Stat3 activation. Biochem. Pharmacol. 76, 1681–1693.10.1016/j.bcp.2008.09.012Suche in Google Scholar
Gabay, M., Li, Y., and Felsher, D.W. (2014). MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, pii: a014241.10.1101/cshperspect.a014241Suche in Google Scholar
Gey, G.O., Coffman, W.D., and Tubicek, M.T. (1952). Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res. 12, 264–265.Suche in Google Scholar
Gotoh, B., Takeuchi, K., Komatsu, T., and Yokoo, J. (2003). The STAT2 activation process is a crucial target of Sendai virus C protein for the blockade of α interferon signaling. J. Virol. 77, 3360–3370.10.1128/JVI.77.6.3360-3370.2003Suche in Google Scholar
Gouilleux, F., Wakao, H., Mundt, M., and Groner, B. (1994). Prolactin induces phosphorylation of Tyr694 of Stat5 (MGF), a prerequisite for DNA binding and induction of transcription. EMBO J. 13, 4361–4369.10.1002/j.1460-2075.1994.tb06756.xSuche in Google Scholar
Grimley, P.M., Dong, F., and Rui, H. (1999). Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev. 10, 131–157.10.1016/S1359-6101(99)00011-8Suche in Google Scholar
Guthridge, M.A., Stomski, F.C., Thomas, D., Woodcock, J.M., Bagley, C.J., Berndt, M.C., and Lopez, A.F. (1998). Mechanism of activation of the GM-CSF, IL-3, and IL-5 family of receptors. Stem Cells 16, 301–313.10.1002/stem.160301Suche in Google Scholar
Haque, S.J. and Williams, B.R. (1994). Identification and characterization of an interferon (IFN)-stimulated response element-IFN-stimulated gene factor 3-independent signaling pathway for IFN-α. J. Biol. Chem. 269, 19523–19529.10.1016/S0021-9258(17)32200-7Suche in Google Scholar
Heidelberger, S., Zinzalla, G., Antonow, D., Essex, S., Piku Basu, B., Palmer, J., Husby, J., Jackson, P.J.M., Rahman, K.M., Wilderspin, A.F., et al. (2013). Investigation of the protein alkylation sites of the STAT3:STAT3 inhibitor Stattic by mass spectrometry. Bioorg. Med. Chem. Lett. 23, 4719–4722.10.1016/j.bmcl.2013.05.066Suche in Google Scholar PubMed
Hoffman, B., Amanullah, A., Shafarenko, M., and Liebermann, D.A. (2002). The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 21, 3414–3421.10.1038/sj.onc.1205400Suche in Google Scholar PubMed
Kim, B.-H., Won, C., Lee, Y.-H., Choi, J.S., Noh, K.H., Han, S., Lee, H., Lee, C.S., Lee, D.-S., Ye, S.-K., et al. (2013). Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs. Biochem. Pharmacol. 86, 950–959.10.1016/j.bcp.2013.08.009Suche in Google Scholar PubMed
Levitzki, A. and Mishani, E. (2006). Tyrphostins and other tyrosine kinase inhibitors. Annu. Rev. Biochem. 75, 93–109.10.1146/annurev.biochem.75.103004.142657Suche in Google Scholar
Li, X., Leung, S., Qureshi, S., Darnell, J.E., and Stark, G.R. (1996). Formation of STAT1-STAT2 heterodimers and their role in the activation of IRF-1 gene transcription by interferon-α. J. Biol. Chem. 271, 5790–5794.10.1074/jbc.271.10.5790Suche in Google Scholar
Lin, J.X. and Leonard, W.J. (2000). The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19, 2566–2576.10.1038/sj.onc.1203523Suche in Google Scholar
Lin, J.-X., Li, P., Liu, D., Jin, H.T., He, J., Ata Ur Rasheed, M., Rochman, Y., Wang, L., Cui, K., Liu, C., et al. (2012). Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36, 586–599.10.1016/j.immuni.2012.02.017Suche in Google Scholar
Liu, Y.-C., Hsieh, C.-W., Wu, C.-C., and Wung, B.-S. (2007). Chalcone inhibits the activation of NF-κB and STAT3 in endothelial cells via endogenous electrophile. Life Sci. 80, 1420–1430.10.1016/j.lfs.2006.12.040Suche in Google Scholar
Liu, Y., Gao, X., Deeb, D., Arbab, A.S., Dulchavsky, S.A., and Gautam, S.C. (2012). Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation. J. Exp. Ther. Oncol. 10, 1–8.Suche in Google Scholar
Liu, S., Walker, S.R., Nelson, E.A., Cerulli, R., Xiang, M., Toniolo, P.A., Qi, J., Stone, R.M., Wadleigh, M., Bradner, J.E., et al. (2014). Targeting STAT5 in hematologic malignancies through inhibition of the bromodomain and extra-terminal (BET) bromodomain protein BRD2. Mol. Cancer Ther. 13, 1194–1205.10.1158/1535-7163.MCT-13-0341Suche in Google Scholar
Luo, C. and Laaja, P. (2004). Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov. Today 9, 268–275.10.1016/S1359-6446(03)03014-9Suche in Google Scholar
Ma, L., Gao, J., Guan, Y., Shi, X., Zhang, H., Ayrapetov, M.K., Zhang, Z., Xu, L., Hyun, Y.-M., Kim, M., et al. (2010). Acetylation modulates prolactin receptor dimerization. Proc. Natl. Acad. Sci. USA 107, 19314–19319.10.1073/pnas.1010253107Suche in Google Scholar PubMed PubMed Central
Mahapatra, D.K., Bharti, S.K., and Asati, V. (2015). Anti-cancer chalcones: structural and molecular target perspectives. Eur. J. Med. Chem. 98, 69–114.10.1016/j.ejmech.2015.05.004Suche in Google Scholar PubMed
Mamoon, N.M., Smith, J.K., Chatti, K., Lee, S., Kundrapu, K., and Duhé, R.J. (2007). Multiple cysteine residues are implicated in Janus kinase 2-mediated catalysis. Biochemistry (Mosc.) 46, 14810–14818.10.1021/bi701118uSuche in Google Scholar PubMed
Mandal, M., Powers, S.E., Maienschein-Cline, M., Bartom, E.T., Hamel, K.M., Kee, B.L., Dinner, A.R., and Clark, M.R. (2011). Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat. Immunol. 12, 1212–1220.10.1038/ni.2136Suche in Google Scholar
Matsumoto, A., Masuhara, M., Mitsui, K., Yokouchi, M., Ohtsubo, M., Misawa, H., Miyajima, A., and Yoshimura, A. (1997). CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89, 3148–3154.10.1182/blood.V89.9.3148Suche in Google Scholar
Meydan, N., Grunberger, T., Dadi, H., Shahar, M., Arpaia, E., Lapidot, Z., Leeder, J.S., Freedman, M., Cohen, A., Gazit, A., et al. (1996). Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645–648.10.1038/379645a0Suche in Google Scholar
Nelson, E.A., Walker, S.R., Alvarez, J.V., and Frank, D.A. (2004). Isolation of unique STAT5 targets by chromatin immunoprecipitation-based gene identification. J. Biol. Chem. 279, 54724–54730.10.1074/jbc.M408464200Suche in Google Scholar
Nelson, E.A., Sharma, S.V., Settleman, J., and Frank, D.A. (2011). A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget 2, 518–524.10.18632/oncotarget.296Suche in Google Scholar
Nosaka, T., Kawashima, T., Misawa, K., Ikuta, K., Mui, A.L., and Kitamura, T. (1999). STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 18, 4754–4765.10.1093/emboj/18.17.4754Suche in Google Scholar
Nusinzon, I. and Horvath, C.M. (2003). Interferon-stimulated transcription and innate antiviral immunity require deacetylase activity and histone deacetylase 1. Proc. Natl. Acad. Sci. USA 100, 14742–14747.10.1073/pnas.2433987100Suche in Google Scholar
Onishi, M., Nosaka, T., Misawa, K., Mui, A.L., Gorman, D., McMahon, M., Miyajima, A., and Kitamura, T. (1998). Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18, 3871–3879.10.1128/MCB.18.7.3871Suche in Google Scholar
O’Shea, J.J., Schwartz, D.M., Villarino, A.V., Gadina, M., McInnes, I.B., and Laurence, A. (2015). The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328.10.1146/annurev-med-051113-024537Suche in Google Scholar
Palacios, R. and Steinmetz, M. (1985). Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41, 727–734.10.1016/S0092-8674(85)80053-2Suche in Google Scholar
Pande, V., Sousa, S.F., and Ramos, M.J. (2009). Direct covalent modification as a strategy to inhibit nuclear factor-κB. Curr. Med. Chem. 16, 4261–4273.10.2174/092986709789578222Suche in Google Scholar PubMed
Pandey, M.K., Sung, B., Ahn, K.S., and Aggarwal, B.B. (2009). Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol. Pharmacol. 75, 525–533.10.1124/mol.108.052548Suche in Google Scholar PubMed PubMed Central
Pinz, S., Unser, S., and Rascle, A. (2014a). The natural chemopreventive agent sulforaphane inhibits STAT5 activity. PLoS One 9, e99391.10.1371/journal.pone.0099391Suche in Google Scholar PubMed PubMed Central
Pinz, S., Unser, S., Brueggemann, S., Besl, E., Al-Rifai, N., Petkes, H., Amslinger, S., and Rascle, A. (2014b). The synthetic α-bromo-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) inhibits the JAK/STAT signaling pathway. PLoS One 9, e90275.10.1371/journal.pone.0090275Suche in Google Scholar PubMed PubMed Central
Pinz, S., Unser, S., Buob, D., Fischer, P., Jobst, B., and Rascle, A. (2015). Deacetylase inhibitors repress STAT5-mediated transcription by interfering with bromodomain and extra-terminal (BET) protein function. Nucleic Acids Res. 43, 3524–3545.10.1093/nar/gkv188Suche in Google Scholar PubMed PubMed Central
Pinz, S., Unser, S., and Rascle, A. (2016). Signal transducer and activator of transcription STAT5 is recruited to c-Myc super-enhancer. BMC Mol. Biol. 17, 10.10.1186/s12867-016-0063-ySuche in Google Scholar PubMed PubMed Central
Platanias, L.C. (2005). Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat. Rev. Immunol. 5, 375–386.10.1038/nri1604Suche in Google Scholar PubMed
Quintás-Cardama, A. and Verstovsek, S. (2013). Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 19, 1933–1940.10.1158/1078-0432.CCR-12-0284Suche in Google Scholar PubMed PubMed Central
Rajendran, P., Ong, T.H., Chen, L., Li, F., Shanmugam, M.K., Vali, S., Abbasi, T., Kapoor, S., Sharma, A., Kumar, A.P., et al. (2011). Suppression of signal transducer and activator of transcription 3 activation by butein inhibits growth of human hepatocellular carcinoma in vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 17, 1425–1439.10.1158/1078-0432.CCR-10-1123Suche in Google Scholar PubMed
Rascle, A. and Lees, E. (2003). Chromatin acetylation and remodeling at the cis promoter during STAT5-induced transcription. Nucleic Acids Res. 31, 6882–6890.10.1093/nar/gkg907Suche in Google Scholar PubMed PubMed Central
Rascle, A., Johnston, J.A., and Amati, B. (2003). Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol. Cell. Biol. 23, 4162–4173.10.1128/MCB.23.12.4162-4173.2003Suche in Google Scholar
Rascle, A., Neumann, T., Raschta, A.-S., Neumann, A., Heining, E., Kastner, J., and Witzgall, R. (2009). The LIM-homeodomain transcription factor LMX1B regulates expression of NF-κB target genes. Exp. Cell Res. 315, 76–96.10.1016/j.yexcr.2008.10.012Suche in Google Scholar
Roe, J.-S., Mercan, F., Rivera, K., Pappin, D.J., and Vakoc, C.R. (2015). BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039.10.1016/j.molcel.2015.04.011Suche in Google Scholar
Rücker, H., Al-Rifai, N., Rascle, A., Gottfried, E., Brodziak-Jarosz, L., Gerhäuser, C., Dick, T.P., and Amslinger, S. (2015). Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site. Org. Biomol. Chem. 13, 3040–3047.10.1039/C4OB02301CSuche in Google Scholar
Sakamoto, S., Potla, R., and Larner, A.C. (2004). Histone deacetylase activity is required to recruit RNA polymerase II to the promoters of selected interferon-stimulated early response genes. J. Biol. Chem. 279, 40362–40367.10.1074/jbc.M406400200Suche in Google Scholar
Shi, J., Whyte, W.A., Zepeda-Mendoza, C.J., Milazzo, J.P., Shen, C., Roe, J.-S., Minder, J.L., Mercan, F., Wang, E., Eckersley-Maslin, M.A., et al. (2013). Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev. 27, 2648–2662.10.1101/gad.232710.113Suche in Google Scholar
Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., and Schreiber, R.D. (1998). How cells respond to interferons. Annu. Rev. Biochem. 67, 227–264.10.1146/annurev.biochem.67.1.227Suche in Google Scholar
Takahashi, A., Yamamoto, N., and Murakami, A. (2011). Cardamonin suppresses nitric oxide production via blocking the IFN-γ/STAT pathway in endotoxin-challenged peritoneal macrophages of ICR mice. Life Sci. 89, 337–342.10.1016/j.lfs.2011.06.027Suche in Google Scholar
Teglund, S., McKay, C., Schuetz, E., van Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G., and Ihle, J.N. (1998). Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850.10.1016/S0092-8674(00)81444-0Suche in Google Scholar
Townsend, D.M., He, L., Hutchens, S., Garrett, T.E., Pazoles, C.J., and Tew, K.D. (2008). NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res. 68, 2870–2877.10.1158/0008-5472.CAN-07-5957Suche in Google Scholar PubMed PubMed Central
Valentino, L. and Pierre, J. (2006). JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem. Pharmacol. 71, 713–721.10.1016/j.bcp.2005.12.017Suche in Google Scholar PubMed
Van Nguyen, T., Angkasekwinai, P., Dou, H., Lin, F.-M., Lu, L.-S., Cheng, J., Chin, Y.E., Dong, C., and Yeh, E.T.H. (2012). SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol. Cell 45, 210–221.10.1016/j.molcel.2011.12.026Suche in Google Scholar PubMed PubMed Central
Villarino, A.V., Kanno, Y., Ferdinand, J.R., and O’Shea, J.J. (2015). Mechanisms of Jak/STAT signaling in immunity and disease. J. Immunol. Baltim. Md 1950 194, 21–27.10.4049/jimmunol.1401867Suche in Google Scholar PubMed PubMed Central
Warsch, W., Walz, C., and Sexl, V. (2013). JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 122, 2167–2175.10.1182/blood-2013-02-485573Suche in Google Scholar PubMed
Watanabe, S., Zeng, R., Aoki, Y., Itoh, T., and Arai, K. (2001). Initiation of polyoma virus origin-dependent DNA replication through STAT5 activation by human granulocyte-macrophage colony-stimulating factor. Blood 97, 1266–1273.10.1182/blood.V97.5.1266Suche in Google Scholar PubMed
Wells, G. (2015). Peptide and small molecule inhibitors of the Keap1-Nrf2 protein-protein interaction. Biochem. Soc. Trans. 43, 674–679.10.1042/BST20150051Suche in Google Scholar PubMed
Wieczorek, M., Ginter, T., Brand, P., Heinzel, T., and Krämer, O.H. (2012). Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev. 23, 293–305.10.1016/j.cytogfr.2012.06.005Suche in Google Scholar PubMed
Wong, L.H., Sim, H., Chatterjee-Kishore, M., Hatzinisiriou, I., Devenish, R.J., Stark, G., and Ralph, S.J. (2002). Isolation and characterization of a human STAT1 gene regulatory element. Inducibility by interferon (IFN) types I and II and role of IFN regulatory factor-1. J. Biol. Chem. 277, 19408–19417.10.1074/jbc.M111302200Suche in Google Scholar PubMed
Xie, Y., Kole, S., Precht, P., Pazin, M.J., and Bernier, M. (2009). S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 150, 1122–1131.10.1210/en.2008-1241Suche in Google Scholar PubMed PubMed Central
Yashiro-Ohtani, Y., Wang, H., Zang, C., Arnett, K.L., Bailis, W., Ho, Y., Knoechel, B., Lanauze, C., Louis, L., Forsyth, K.S., et al. (2014). Long-range enhancer activity determines Myc sensitivity to Notch inhibitors in T cell leukemia. Proc. Natl. Acad. Sci. USA 111, E4946–E4953.10.1073/pnas.1407079111Suche in Google Scholar PubMed PubMed Central
Yu, H., Pardoll, D., and Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809.10.1038/nrc2734Suche in Google Scholar PubMed PubMed Central
Supplemental Material:
The online version of this article (DOI: 10.1515/hsz-2016-0148) offers supplementary material, available to authorized users.
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- Dynamic organization of the mitochondrial protein import machinery
- Common therapeutic strategies for prion and Alzheimer’s diseases
- IL-1 family cytokines in cancer immunity – a matter of life and death
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Epigenetic regulation of KLK7 gene expression in pancreatic and cervical cancer cells
- Molecular Medicine
- Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC
- Biological characteristics of renal cancer cells after CTP-mediated cancer suppressor gene NPRL2 protein treatment
- Cell Biology and Signaling
- Hepatitis B virus surface protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways
- Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2′,3,4,4′-tetramethoxychalcones α-Br-TMC and α-CF3-TMC
- Vitamin C promotes pluripotency of human induced pluripotent stem cells via the histone demethylase JARID1A
Artikel in diesem Heft
- Frontmatter
- Reviews
- Dynamic organization of the mitochondrial protein import machinery
- Common therapeutic strategies for prion and Alzheimer’s diseases
- IL-1 family cytokines in cancer immunity – a matter of life and death
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Epigenetic regulation of KLK7 gene expression in pancreatic and cervical cancer cells
- Molecular Medicine
- Regulation of glycosylphosphatidylinositol-anchored proteins and GPI-phospholipase D in a c-Myc transgenic mouse model of hepatocellular carcinoma and human HCC
- Biological characteristics of renal cancer cells after CTP-mediated cancer suppressor gene NPRL2 protein treatment
- Cell Biology and Signaling
- Hepatitis B virus surface protein-induced hPIAS1 transcription requires TAL1, E47, MYOG, NFI, and MAPK signal pathways
- Inhibition of interleukin-3- and interferon- α-induced JAK/STAT signaling by the synthetic α-X-2′,3,4,4′-tetramethoxychalcones α-Br-TMC and α-CF3-TMC
- Vitamin C promotes pluripotency of human induced pluripotent stem cells via the histone demethylase JARID1A