Abstract
The pro-inflammatory cytokines tumor necrosis factor (TNF), interleukin-1 (IL-1) and interleukin-6 (IL-6) are key players of the innate and adaptive immunity. Their activity needs to be tightly controlled to allow the initiation of an appropriate immune response as defense mechanism against pathogens or tissue injury. Excessive or sustained signaling of either of these cytokines leads to severe diseases, including rheumatoid arthritis, inflammatory bowel diseases (Crohn’s disease, ulcerative colitis), steatohepatitis, periodic fevers and even cancer. Studies carried out in the last 30 years have emphasized that an elaborate control system for each of these cytokines exists. Here, we summarize what is currently known about the involvement of receptor endocytosis in the regulation of these pro-inflammatory cytokines’ signaling cascades. Particularly in the last few years it was shown that this cellular process is far more than a mere feedback mechanism to clear cytokines from the circulation and to shut off their signal transduction.
Acknowledgments
The work of H.M.H. and A.G. is supported by the Deutsche Forschungsgemeinschaft (FZ82; SFB 688, TP A20), the Interdisziplinäres Zentrum für Klinische Forschung (IZKF) Würzburg (Project A-242) and the Else Kröner-Fresenius Stiftung (Project A67).
References
Aggarwal, B.B. (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756.10.1038/nri1184Search in Google Scholar PubMed
Ali, M., Fritsch, J., Zigdon, H., Pewzner-Jung, Y., Schutze, S., and Futerman, A.H. (2013). Altering the sphingolipid acyl chain composition prevents LPS/GLN-mediated hepatic failure in mice by disrupting TNFR1 internalization. Cell Death Dis. 4, e929.10.1038/cddis.2013.451Search in Google Scholar PubMed PubMed Central
Babon, J.J., Varghese, L.N., and Nicola, N.A. (2014). Inhibition of IL-6 family cytokines by SOCS3. Semin. Immunol. 26, 13–19.10.1016/j.smim.2013.12.004Search in Google Scholar PubMed PubMed Central
Bianchi, K. and Meier, P. (2009). A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. Mol. Cell 36, 736–742.10.1016/j.molcel.2009.11.029Search in Google Scholar PubMed
Boucrot, E., Ferreira, A.P., Almeida-Souza, L., Debard, S., Vallis, Y., Howard, G., Bertot, L., Sauvonnet, N., and McMahon, H.T. (2015). Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465.10.1038/nature14067Search in Google Scholar PubMed
Bourke, E., Cassetti, A., Villa, A., Fadlon, E., Colotta, F., and Mantovani, A. (2003). IL-1 β scavenging by the type II IL-1 decoy receptor in human neutrophils. J. Immunol. 170, 5999–6005.10.4049/jimmunol.170.12.5999Search in Google Scholar PubMed
Brissoni, B., Agostini, L., Kropf, M., Martinon, F., Swoboda, V., Lippens, S., Everett, H., Aebi, N., Janssens, S., Meylan, E., et al. (2006). Intracellular trafficking of interleukin-1 receptor I requires Tollip. Curr. Biol. 16, 2265–2270.10.1016/j.cub.2006.09.062Search in Google Scholar PubMed
Castell, J.V., Geiger, T., Gross, V., Andus, T., Walter, E., Hirano, T., Kishimoto, T., and Heinrich, P.C. (1988). Plasma clearance, organ distribution and target cells of interleukin-6/hepatocyte-stimulating factor in the rat. Eur. J. Biochem. 177, 357–361.10.1111/j.1432-1033.1988.tb14383.xSearch in Google Scholar
Chin, Y.R. and Horwitz, M.S. (2006). Adenovirus RID complex enhances degradation of internalized tumour necrosis factor receptor 1 without affecting its rate of endocytosis. J. Gen. Virol. 87, 3161–3167.10.1099/vir.0.82001-0Search in Google Scholar PubMed
Colotta, F., Re, F., Muzio, M., Bertini, R., Polentarutti, N., Sironi, M., Giri, J.G., Dower, S.K., Sims, J.E., and Mantovani, A. (1993). Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 261, 472–475.10.1126/science.8332913Search in Google Scholar PubMed
Curtis, B.M., Widmer, M.B., deRoos, P., and Qwarnstrom, E.E. (1990). IL-1 and its receptor are translocated to the nucleus. J. Immunol. 144, 1295–1303.10.4049/jimmunol.144.4.1295Search in Google Scholar
Danese, S., Vuitton, L., and Peyrin-Biroulet, L. (2015). Biologic agents for IBD: practical insights. Nat. Rev. Gastroenterol. Hepatol. 12, 537–545.10.1038/nrgastro.2015.135Search in Google Scholar
Didierlaurent, A., Brissoni, B., Velin, D., Aebi, N., Tardivel, A., Kaslin, E., Sirard, J.C., Angelov, G., Tschopp, J., and Burns, K. (2006). Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide. Mol. Cell. Biol. 26, 735–742.10.1128/MCB.26.3.735-742.2006Search in Google Scholar
Dinarello, C.A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550.10.1146/annurev.immunol.021908.132612Search in Google Scholar
Dinarello, C.A. (2011). Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 117, 3720–3732.10.1182/blood-2010-07-273417Search in Google Scholar
Dittrich, E., Rose-John, S., Gerhartz, C., Mullberg, J., Stoyan, T., Yasukawa, K., Heinrich, P.C., and Graeve, L. (1994). Identification of a region within the cytoplasmic domain of the interleukin-6 (IL-6) signal transducer gp130 important for ligand-induced endocytosis of the IL-6 receptor. J. Biol. Chem. 269, 19014–19020.10.1016/S0021-9258(17)32267-6Search in Google Scholar
Dittrich, E., Haft, C.R., Muys, L., Heinrich, P.C., and Graeve, L. (1996). A di-leucine motif and an upstream serine in the interleukin-6 (IL-6) signal transducer gp130 mediate ligand-induced endocytosis and down-regulation of the IL-6 receptor. J. Biol. Chem. 271, 5487–5494.10.1074/jbc.271.10.5487Search in Google Scholar
Doumanov, J.A., Daubrawa, M., Unden, H., and Graeve, L. (2006). Identification of a basolateral sorting signal within the cytoplasmic domain of the interleukin-6 signal transducer gp130. Cell. Signal. 18, 1140–1146.10.1016/j.cellsig.2005.09.006Search in Google Scholar
Dripps, D.J., Brandhuber, B.J., Thompson, R.C., and Eisenberg, S.P. (1991). Interleukin-1 (IL-1) receptor antagonist binds to the 80-kDa IL-1 receptor but does not initiate IL-1 signal transduction. J. Biol. Chem. 266, 10331–10336.10.1016/S0021-9258(18)99230-6Search in Google Scholar
Edelmann, B., Bertsch, U., Tchikov, V., Winoto-Morbach, S., Perrotta, C., Jakob, M., Adam-Klages, S., Kabelitz, D., and Schutze, S. (2011). Caspase-8 and caspase-7 sequentially mediate proteolytic activation of acid sphingomyelinase in TNF-R1 receptosomes. EMBO J. 30, 379–394.10.1038/emboj.2010.326Search in Google Scholar PubMed PubMed Central
Ernst, M., Inglese, M., Waring, P., Campbell, I.K., Bao, S., Clay, F.J., Alexander, W.S., Wicks, I.P., Tarlinton, D.M., Novak, U., et al. (2001). Defective gp130-mediated signal transducer and activator of transcription (STAT) signaling results in degenerative joint disease, gastrointestinal ulceration, and failure of uterine implantation. J. Exp. Med. 194, 189–203.10.1084/jem.194.2.189Search in Google Scholar PubMed PubMed Central
Faustman, D.L. and Davis, M. (2013). TNF receptor 2 and disease: autoimmunity and regenerative medicine. Front. Immunol. 4, 478.10.3389/fimmu.2013.00478Search in Google Scholar PubMed PubMed Central
Fessler, S.P., Chin, Y.R., and Horwitz, M.S. (2004). Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J. Virol. 78, 13113–13121.10.1128/JVI.78.23.13113-13121.2004Search in Google Scholar PubMed PubMed Central
Fischer, R., Maier, O., Naumer, M., Krippner-Heidenreich, A., Scheurich, P., and Pfizenmaier, K. (2011). Ligand-induced internalization of TNF receptor 2 mediated by a di-leucin motif is dispensable for activation of the NF-κB pathway. Cell. Signal. 23, 161–170.10.1016/j.cellsig.2010.08.016Search in Google Scholar PubMed
Fotin-Mleczek, M., Henkler, F., Samel, D., Reichwein, M., Hausser, A., Parmryd, I., Scheurich, P., Schmid, J.A., and Wajant, H. (2002). Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J. Cell Sci. 115, 2757–2770.10.1242/jcs.115.13.2757Search in Google Scholar PubMed
Fotin-Mleczek, M., Welte, S., Mader, O., Duchardt, F., Fischer, R., Hufnagel, H., Scheurich, P., and Brock, R. (2005). Cationic cell-penetrating peptides interfere with TNF signalling by induction of TNF receptor internalization. J. Cell Sci. 118, 3339–3351.10.1242/jcs.02460Search in Google Scholar PubMed
Fritsch, J., Stephan, M., Tchikov, V., Winoto-Morbach, S., Gubkina, S., Kabelitz, D., and Schutze, S. (2014). Cell fate decisions regulated by K63 ubiquitination of tumor necrosis factor receptor 1. Mol. Cell. Biol. 34, 3214–3228.10.1128/MCB.00048-14Search in Google Scholar PubMed PubMed Central
Garlanda, C., Dinarello, C.A., and Mantovani, A. (2013). The interleukin-1 family: back to the future. Immunity 39, 1003–1018.10.1016/j.immuni.2013.11.010Search in Google Scholar PubMed PubMed Central
Gaultier, A., Arandjelovic, S., Niessen, S., Overton, C.D., Linton, M.F., Fazio, S., Campana, W.M., Cravatt, B.F., 3rd, and Gonias, S.L. (2008). Regulation of tumor necrosis factor receptor-1 and the IKK-NF-κB pathway by LDL receptor-related protein explains the antiinflammatory activity of this receptor. Blood 111, 5316–5325.10.1182/blood-2007-12-127613Search in Google Scholar PubMed PubMed Central
Gerlach, B., Cordier, S.M., Schmukle, A.C., Emmerich, C.H., Rieser, E., Haas, T.L., Webb, A.I., Rickard, J.A., Anderton, H., Wong, W.W., et al. (2011). Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471, 591–596.10.1038/nature09816Search in Google Scholar PubMed
Gibson, R.M., Schiemann, W.P., Prichard, L.B., Reno, J.M., Ericsson, L.H., and Nathanson, N.M. (2000). Phosphorylation of human gp130 at Ser-782 adjacent to the di-leucine internalization motif. Effects on expression and signaling. J. Biol. Chem. 275, 22574–22582.10.1074/jbc.M907658199Search in Google Scholar PubMed
Graeve, L., Korolenko, T.A., Hemmann, U., Weiergraber, O., Dittrich, E., and Heinrich, P.C. (1996). A complex of the soluble interleukin-6 receptor and interleukin-6 is internalized via the signal transducer gp130. FEBS Lett. 399, 131–134.10.1016/S0014-5793(96)01305-1Search in Google Scholar
Greenfeder, S.A., Nunes, P., Kwee, L., Labow, M., Chizzonite, R.A., and Ju, G. (1995). Molecular cloning and characterization of a second subunit of the interleukin 1 receptor complex. J. Biol. Chem. 270, 13757–13765.10.1074/jbc.270.23.13757Search in Google Scholar
Grell, M., Douni, E., Wajant, H., Lohden, M., Clauss, M., Maxeiner, B., Georgopoulos, S., Lesslauer, W., Kollias, G., Pfizenmaier, K., et al. (1995). The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83, 793–802.10.1016/0092-8674(95)90192-2Search in Google Scholar
Grenfell, S., Smithers, N., Miller, K., and Solari, R. (1989). Receptor-mediated endocytosis and nuclear transport of human interleukin 1α. Biochem. J. 264, 813–822.10.1042/bj2640813Search in Google Scholar
Hansen, B., Dittrich-Breiholz, O., Kracht, M., and Windheim, M. (2013). Regulation of NF-κB-dependent gene expression by ligand-induced endocytosis of the interleukin-1 receptor. Cell. Signal. 25, 214–228.10.1016/j.cellsig.2012.09.028Search in Google Scholar
Harper, N., Hughes, M., MacFarlane, M., and Cohen, G.M. (2003). Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis. J. Biol. Chem. 278, 25534–25541.10.1074/jbc.M303399200Search in Google Scholar
Hausherr, A., Tavares, R., Schaffer, M., Obermeier, A., Miksch, C., Mitina, O., Ellwart, J., Hallek, M., and Krause, G. (2007). Inhibition of IL-6-dependent growth of myeloma cells by an acidic peptide repressing the gp130-mediated activation of Src family kinases. Oncogene 26, 4987–4998.10.1038/sj.onc.1210306Search in Google Scholar
Heguy, A., Baldari, C., Bush, K., Nagele, R., Newton, R.C., Robb, R.J., Horuk, R., Telford, J.L., and Melli, M. (1991). Internalization and nuclear localization of interleukin 1 are not sufficient for function. Cell Growth Differ. 2, 311–315.Search in Google Scholar
Heinrich, P.C., Behrmann, I., Haan, S., Hermanns, H.M., Muller-Newen, G., and Schaper, F. (2003). Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20.10.1042/bj20030407Search in Google Scholar
Hibi, M., Murakami, M., Saito, M., Hirano, T., Taga, T., and Kishimoto, T. (1990). Molecular cloning and expression of an IL-6 signal transducer, gp130. Cell 63, 1149–1157.10.1016/0092-8674(90)90411-7Search in Google Scholar
Higuchi, M. and Aggarwal, B.B. (1994). TNF induces internalization of the p60 receptor and shedding of the p80 receptor. J. Immunol. 152, 3550–3558.10.4049/jimmunol.152.7.3550Search in Google Scholar
Honke, N., Ohl, K., Wiener, A., Bierwagen, J., Peitz, J., Di Fiore, S., Fischer, R., Wagner, N., Wuller, S., and Tenbrock, K. (2014). The p38-mediated rapid down-regulation of cell surface gp130 expression impairs interleukin-6 signaling in the synovial fluid of juvenile idiopathic arthritis patients. Arthritis Rheumatol. 66, 470–478.10.1002/art.38245Search in Google Scholar PubMed
Horuk, R. and McCubrey, J.A. (1989). The interleukin-1 receptor in Raji human B-lymphoma cells. Molecular characterization and evidence for receptor-mediated activation of gene expression. Biochem. J. 260, 657–663.10.1042/bj2600657Search in Google Scholar
Howes, M.T., Kirkham, M., Riches, J., Cortese, K., Walser, P.J., Simpson, F., Hill, M.M., Jones, A., Lundmark, R., Lindsay, M.R., et al. (2010). Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J. Cell Biol. 190, 675–691.10.1083/jcb.201002119Search in Google Scholar
Ji, W., Li, Y., Wan, T., Wang, J., Zhang, H., Chen, H., and Min, W. (2012). Both internalization and AIP1 association are required for tumor necrosis factor receptor 2-mediated JNK signaling. Arterioscler. Thromb. Vasc. Biol. 32, 2271–2279.10.1161/ATVBAHA.112.253666Search in Google Scholar
Jones, S.J., Ledgerwood, E.C., Prins, J.B., Galbraith, J., Johnson, D.R., Pober, J.S., and Bradley, J.R. (1999). TNF recruits TRADD to the plasma membrane but not the trans-Golgi network, the principal subcellular location of TNF-R1. J. Immunol. 162, 1042–1048.10.4049/jimmunol.162.2.1042Search in Google Scholar
Kelly, B.T., McCoy, A.J., Spate, K., Miller, S.E., Evans, P.R., Honing, S., and Owen, D.J. (2008). A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456, 976–979.10.1038/nature07422Search in Google Scholar
Kelly, M., Gauthier, M.S., Saha, A.K., and Ruderman, N.B. (2009). Activation of AMP-activated protein kinase by interleukin-6 in rat skeletal muscle: association with changes in cAMP, energy state, and endogenous fuel mobilization. Diabetes 58, 1953–1960.10.2337/db08-1293Search in Google Scholar
Klingseisen, L., Ehrenschwender, M., Heigl, U., Wajant, H., Hehlgans, T., Schutze, S., and Schneider-Brachert, W. (2012). E3-14.7K is recruited to TNF-receptor 1 and blocks TNF cytolysis independent from interaction with optineurin. PLoS One 7, e38348.10.1371/journal.pone.0038348Search in Google Scholar
Korherr, C., Hofmeister, R., Wesche, H., and Falk, W. (1997). A critical role for interleukin-1 receptor accessory protein in interleukin-1 signaling. Eur. J. Immunol. 27, 262–267.10.1002/eji.1830270139Search in Google Scholar
Kovacs, J.J., Hara, M.R., Davenport, C.L., Kim, J., and Lefkowitz, R.J. (2009). Arrestin development: emerging roles for β-arrestins in developmental signaling pathways. Dev. Cell 17, 443–458.10.1016/j.devcel.2009.09.011Search in Google Scholar
Laguette, N., Bregnard, C., Bouchet, J., Benmerah, A., Benichou, S., and Basmaciogullari, S. (2009). Nef-induced CD4 endocytosis in human immunodeficiency virus type 1 host cells: role of p56lck kinase. J. Virol. 83, 7117–7128.10.1128/JVI.01648-08Search in Google Scholar
Legler, D.F., Micheau, O., Doucey, M.A., Tschopp, J., and Bron, C. (2003). Recruitment of TNF receptor 1 to lipid rafts is essential for TNFalpha-mediated NF-κB activation. Immunity 18, 655–664.10.1016/S1074-7613(03)00092-XSearch in Google Scholar
Lehmann, U., Schmitz, J., Weissenbach, M., Sobota, R.M., Hortner, M., Friederichs, K., Behrmann, I., Tsiaris, W., Sasaki, A., Schneider-Mergener, J., et al. (2003). SHP2 and SOCS3 contribute to Tyr-759-dependent attenuation of interleukin-6 signaling through gp130. J. Biol. Chem. 278, 661–671.10.1074/jbc.M210552200Search in Google Scholar
Li, Q., Harraz, M.M., Zhou, W., Zhang, L.N., Ding, W., Zhang, Y., Eggleston, T., Yeaman, C., Banfi, B., and Engelhardt, J.F. (2006). Nox2 and Rac1 regulate H2O2-dependent recruitment of TRAF6 to endosomal interleukin-1 receptor complexes. Mol. Cell. Biol. 26, 140–154.10.1128/MCB.26.1.140-154.2006Search in Google Scholar
Lowenthal, J.W. and MacDonald, H.R. (1986). Binding and internalization of interleukin 1 by T cells. Direct evidence for high- and low-affinity classes of interleukin 1 receptor. J. Exp. Med. 164, 1060–1074.10.1084/jem.164.4.1060Search in Google Scholar
Martens, A.S., Bode, J.G., Heinrich, P.C., and Graeve, L. (2000). The cytoplasmic domain of the interleukin-6 receptor gp80 mediates its basolateral sorting in polarized Madin-Darby canine kidney cells. J. Cell Sci. 113, 3593–3602.10.1242/jcs.113.20.3593Search in Google Scholar
Matsushima, K., Yodoi, J., Tagaya, Y., and Oppenheim, J.J. (1986). Down-regulation of interleukin 1 (IL 1) receptor expression by IL 1 and fate of internalized 125I-labeled IL 1β in a human large granular lymphocyte cell line. J. Immunol. 137, 3183–3188.10.4049/jimmunol.137.10.3183Search in Google Scholar
McMahon, H.T. and Boucrot, E. (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell. Biol. 12, 517–533.10.1038/nrm3151Search in Google Scholar
Micheau, O. and Tschopp, J. (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190.10.1016/S0092-8674(03)00521-XSearch in Google Scholar
Mizel, S.B., Kilian, P.L., Lewis, J.C., Paganelli, K.A., and Chizzonite, R.A. (1987). The interleukin 1 receptor. Dynamics of interleukin 1 binding and internalization in T cells and fibroblasts. J. Immunol. 138, 2906–2912.10.4049/jimmunol.138.9.2906Search in Google Scholar
Murakami, M., Narazaki, M., Hibi, M., Yawata, H., Yasukawa, K., Hamaguchi, M., Taga, T., and Kishimoto, T. (1991). Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. USA 88, 11349–11353.10.1073/pnas.88.24.11349Search in Google Scholar
Netea, M.G., van de Veerdonk, F.L., van der Meer, J.W., Dinarello, C.A., and Joosten, L.A. (2015.) Inflammasome-independent regulation of IL-1-family cytokines. Annu. Rev. Immunol. 33, 49–77.10.1146/annurev-immunol-032414-112306Search in Google Scholar
O’Brien, C.A., Lin, S.C., Bellido, T., and Manolagas, S.C. (2000). Expression levels of gp130 in bone marrow stromal cells determine the magnitude of osteoclastogenic signals generated by IL-6-type cytokines. J. Cell. Biochem. 79, 532–541.10.1002/1097-4644(20001215)79:4<532::AID-JCB20>3.0.CO;2-USearch in Google Scholar
O’Connor, R.A., Floess, S., Huehn, J., Jones, S.A., and Anderton, S.M. (2012). Foxp3(+) Treg cells in the inflamed CNS are insensitive to IL-6-driven IL-17 production. Eur. J. Immunol. 42, 1174–1179.10.1002/eji.201142216Search in Google Scholar
O’Neill, L.A. (2008). The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol, Rev. 226, 10–18.10.1111/j.1600-065X.2008.00701.xSearch in Google Scholar
Puimege, L., Libert, C., and Van Hauwermeiren, F. (2014). Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev. 25, 285–300.10.1016/j.cytogfr.2014.03.004Search in Google Scholar
Radtke, S., Wuller, S., Yang, X.P., Lippok, B.E., Mutze, B., Mais, C., de Leur, H.S., Bode, J.G., Gaestel, M., Heinrich, P.C., et al. (2010). Cross-regulation of cytokine signalling: pro-inflammatory cytokines restrict IL-6 signalling through receptor internalisation and degradation. J. Cell Sci. 123, 947–959.10.1242/jcs.065326Search in Google Scholar
Richter, C., Messerschmidt, S., Holeiter, G., Tepperink, J., Osswald, S., Zappe, A., Branschadel, M., Boschert, V., Mann, D.A., Scheurich, P., et al. (2012). The tumor necrosis factor receptor stalk regions define responsiveness to soluble versus membrane-bound ligand. Mol. Cell. Biol. 32, 2515–2529.10.1128/MCB.06458-11Search in Google Scholar
Rose-John, S., Hipp, E., Lenz, D., Legres, L.G., Korr, H., Hirano, T., Kishimoto, T., and Heinrich, P.C. (1991). Structural and functional studies on the human interleukin-6 receptor. Binding, cross-linking, internalization, and degradation of interleukin-6 by fibroblasts transfected with human interleukin-6-receptor cDNA. J. Biol. Chem. 266, 3841–3846.10.1016/S0021-9258(19)67870-1Search in Google Scholar
Ruland, J. (2011). Return to homeostasis: downregulation of NF-κB responses. Nat. Immunol. 12, 709–714.10.1038/ni.2055Search in Google Scholar PubMed
Schaeffer, M., Schneiderbauer, M., Weidler, S., Tavares, R., Warmuth, M., de Vos, G., and Hallek, M. (2001). Signaling through a novel domain of gp130 mediates cell proliferation and activation of Hck and Erk kinases. Mol. Cell. Biol. 21, 8068–8081.10.1128/MCB.21.23.8068-8081.2001Search in Google Scholar PubMed PubMed Central
Schmitz, J., Weissenbach, M., Haan, S., Heinrich, P.C., and Schaper, F. (2000). SOCS3 exerts its inhibitory function on interleukin-6 signal transduction through the SHP2 recruitment site of gp130. J. Biol. Chem. 275, 12848–12856.10.1074/jbc.275.17.12848Search in Google Scholar PubMed
Schneider-Brachert, W., Tchikov, V., Neumeyer, J., Jakob, M., Winoto-Morbach, S., Held-Feindt, J., Heinrich, M., Merkel, O., Ehrenschwender, M., Adam, D., et al. (2004). Compartmentalization of TNF receptor 1 signaling: internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415–428.10.1016/j.immuni.2004.08.017Search in Google Scholar PubMed
Schneider-Brachert, W., Tchikov, V., Merkel, O., Jakob, M., Hallas, C., Kruse, M.L., Groitl, P., Lehn, A., Hildt, E., Held-Feindt, J., et al. (2006). Inhibition of TNF receptor 1 internalization by adenovirus 14.7K as a novel immune escape mechanism. J. Clin. Invest. 116, 2901–2913.10.1172/JCI23771Search in Google Scholar PubMed PubMed Central
Schutze, S., Machleidt, T., Adam, D., Schwandner, R., Wiegmann, K., Kruse, M.L., Heinrich, M., Wickel, M., and Kronke, M. (1999). Inhibition of receptor internalization by monodansylcadaverine selectively blocks p55 tumor necrosis factor receptor death domain signaling. J. Biol. Chem. 274, 10203–10212.10.1074/jbc.274.15.10203Search in Google Scholar
Schutze, S., Tchikov, V., and Schneider-Brachert, W. (2008). Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat. Rev. Mol. Cell. Biol. 9, 655–662.10.1038/nrm2430Search in Google Scholar
Sims, J.E. and Dower, S.K. (1994). Interleukin-1 receptors. Eur. Cytokine Netw. 5, 539–546.Search in Google Scholar
Sims, J.E. and Smith, D.E. (2010). The IL-1 family: regulators of immunity. Nat. Rev. Immunol. 10, 89–102.10.1038/nri2691Search in Google Scholar
Sims, J.E., March, C.J., Cosman, D., Widmer, M.B., MacDonald, H.R., McMahan, C.J., Grubin, C.E., Wignall, J.M., Jackson, J.L., Call, S.M., et al. (1988). cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241, 585–589.10.1126/science.2969618Search in Google Scholar
Slack, J., McMahan, C.J., Waugh, S., Schooley, K., Spriggs, M.K., Sims, J.E., and Dower, S.K. (1993). Independent binding of interleukin-1 alpha and interleukin-1β to type I and type II interleukin-1 receptors. J. Biol. Chem. 268, 2513–2524.10.1016/S0021-9258(18)53806-0Search in Google Scholar
Sonne, O., Davidsen, O., Moller, B.K., and Munck Petersen, C. (1990). Cellular targets and receptors for interleukin-6. I. In vivo and in vitro uptake of IL-6 in liver and hepatocytes. Eur. J. Clin. Invest. 20, 366–376.10.1111/j.1365-2362.1990.tb01872.xSearch in Google Scholar
Taga, T., Hibi, M., Hirata, Y., Yamasaki, K., Yasukawa, K., Matsuda, T., Hirano, T., and Kishimoto, T. (1989). Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58, 573–581.10.1016/0092-8674(89)90438-8Search in Google Scholar
Tanaka, Y., Tanaka, N., Saeki, Y., Tanaka, K., Murakami, M., Hirano, T., Ishii, N., and Sugamura, K. (2008). c-Cbl-dependent monoubiquitination and lysosomal degradation of gp130. Mol. Cell. Biol. 28, 4805–4818.10.1128/MCB.01784-07Search in Google Scholar PubMed PubMed Central
Taylor, P.C. and Feldmann, M. (2009). Anti-TNF biologic agents: still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol. 5, 578–582.10.1038/nrrheum.2009.181Search in Google Scholar PubMed
Thiel, S., Behrmann, I., Dittrich, E., Muys, L., Tavernier, J., Wijdenes, J., Heinrich, P.C., and Graeve, L. (1998a). Internalization of the interleukin 6 signal transducer gp130 does not require activation of the Jak/STAT pathway. Biochem. J. 330, 47–54.10.1042/bj3300047Search in Google Scholar PubMed PubMed Central
Thiel, S., Dahmen, H., Martens, A., Muller-Newen, G., Schaper, F., Heinrich, P.C., and Graeve, L. (1998b). Constitutive internalization and association with adaptor protein-2 of the interleukin-6 signal transducer gp130. FEBS Lett. 441, 231–234.10.1016/S0014-5793(98)01559-2Search in Google Scholar
Tormo, A.J., Letellier, M.C., Sharma, M., Elson, G., Crabe, S., and Gauchat, J.F. (2012). IL-6 activates STAT5 in T cells. Cytokine 60, 575–582.10.1016/j.cyto.2012.07.002Search in Google Scholar PubMed
Trowbridge, I.S., Collawn, J.F., and Hopkins, C.R. (1993). Signal-dependent membrane protein trafficking in the endocytic pathway. Annu. Rev. Cell Biol. 9, 129–161.10.1146/annurev.cb.09.110193.001021Search in Google Scholar PubMed
Uhl, J., Newton, R.C., Giri, J.G., Sandlin, G., and Horuk, R. (1989). Identification of IL-1 receptors on human monocytes. J. Immunol. 142, 1576–1581.10.4049/jimmunol.142.5.1576Search in Google Scholar
Van Herreweghe, F., Festjens, N., Declercq, W., and Vandenabeele, P. (2010). Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell. Mol. Life Sci. 67, 1567–1579.10.1007/s00018-010-0283-0Search in Google Scholar PubMed
Wajant, H. and Scheurich, P. (2011). TNFR1-induced activation of the classical NF-κB pathway. FEBS J. 278, 862–876.10.1111/j.1742-4658.2011.08015.xSearch in Google Scholar PubMed
Wajant, H., Pfizenmaier, K., and Scheurich, P. (2003). Tumor necrosis factor signaling. Cell Death Differ. 10, 45–65.10.1038/sj.cdd.4401189Search in Google Scholar PubMed
Walczak, H. (2011). TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol. Rev. 244, 9–28.10.1111/j.1600-065X.2011.01066.xSearch in Google Scholar PubMed
Walczak, H., Iwai, K., and Dikic, I. (2012). Generation and physiological roles of linear ubiquitin chains. BMC Biol. 10, 23.10.1186/1741-7007-10-23Search in Google Scholar PubMed PubMed Central
Wallach, D. (2016). The cybernetics of TNF: Old views and newer ones. Semin. Cell Dev. Biol. 50, 105–114.10.1016/j.semcdb.2015.10.014Search in Google Scholar PubMed
Wang, Y., Tang, Y., Teng, L., Wu, Y., Zhao, X., and Pei, G. (2006). Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 7, 139–147.10.1038/ni1294Search in Google Scholar PubMed
Windheim, M. and Hansen, B. (2014). Interleukin-1-induced activation of the small GTPase Rac1 depends on receptor internalization and regulates gene expression. Cell. Signal. 26, 49–55.10.1016/j.cellsig.2013.09.015Search in Google Scholar
Yamasaki, K., Taga, T., Hirata, Y., Yawata, H., Kawanishi, Y., Seed, B., Taniguchi, T., Hirano, T., and Kishimoto, T. (1988). Cloning and expression of the human interleukin-6 (BSF-2/IFN beta 2) receptor. Science 241, 825–828.10.1126/science.3136546Search in Google Scholar
Zohlnhofer, D., Graeve, L., Rose-John, S., Schooltink, H., Dittrich, E., and Heinrich, P.C. (1992). The hepatic interleukin-6 receptor. Down-regulation of the interleukin-6 binding subunit (gp80) by its ligand. FEBS Lett. 306, 219–222.10.1016/0014-5793(92)81004-6Search in Google Scholar
Zolk, O., Ng, L.L., O’Brien, R.J., Weyand, M., and Eschenhagen, T. (2002). Augmented expression of cardiotrophin-1 in failing human hearts is accompanied by diminished glycoprotein 130 receptor protein abundance. Circulation 106, 1442–1446.10.1161/01.CIR.0000033117.39335.DFSearch in Google Scholar
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction
- The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Genetic association of NAD(P)H quinone oxidoreductase (NQO1*2) polymorphism with NQO1 levels and risk of diabetic nephropathy
- Protein Structure and Function
- Troponins, intrinsic disorder, and cardiomyopathy
- Molecular Medicine
- Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance
- Cell Biology and Signaling
- Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation
- Proteolysis
- The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2
- Novel Techniques
- A systematic comparison of two new releases of exome sequencing products: the aim of use determines the choice of product
Articles in the same Issue
- Frontmatter
- Reviews
- Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction
- The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Genetic association of NAD(P)H quinone oxidoreductase (NQO1*2) polymorphism with NQO1 levels and risk of diabetic nephropathy
- Protein Structure and Function
- Troponins, intrinsic disorder, and cardiomyopathy
- Molecular Medicine
- Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance
- Cell Biology and Signaling
- Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation
- Proteolysis
- The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2
- Novel Techniques
- A systematic comparison of two new releases of exome sequencing products: the aim of use determines the choice of product