Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation
-
Chang-jun Pi
Abstract
Mesenchymal stem cells (MSCs) are suitable seed cells for bone tissue engineering because they can self-renew and undergo differentiation into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Vascular endothelial growth factor-a (VEGF-a), an angiogenic factor, is also involved in osteogenesis and bone repair. However, the effects of VEGF-a on osteogenic MSCs differentiation remain unknown. It was previously reported that bone morphogenetic protein9 (BMP9) is one of the most important osteogenic BMPs. Here, we investigated the effects of VEGF-a on BMP9-induced osteogenesis with mouse embryo fibroblasts (MEFs). We found that endogenous VEGF-a expression was undetectable in MSCs. Adenovirus-mediated expression of VEGF-a in MEFs potentiated BMP9-induced early and late osteogenic markers, including alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). In stem cell implantation assays, VEGF-a augmented BMP9-induced ectopic bone formation. VEGF-a in combination with BMP9 effectively increased the bone volume and osteogenic activity. However, the synergistic effect was efficiently abolished by the phosphoinositide 3-kinase (PI3K)/AKT inhibitor LY294002. These results demonstrated that BMP9 may crosstalk with VEGF-a through the PI3K/AKT signaling pathway to induce osteogenic differentiation in MEFs. Thus, our findings demonstrate the effects of VEGF-a on BMP9-induced bone formation and provide a new potential strategy for treating nonunion fractures, large segmental bony defects, and/or osteoporotic fractures.
Acknowledgments
The authors thank the Department of Pharmacology, School of Pharmacy, at Chongqing Medical University for providing the facilities used for this study. We also thank the Natural Science Foundation Project of Chongqing Science and Technology Commission (cstc2011jjzt0063).
References
Arthur, A., Zannettino, A., and Gronthos, S. (2009). The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair. J. Cell. Physiol. 218, 237–245.10.1002/jcp.21592Search in Google Scholar
Aubin, J.E. (1998). Advances in the osteoblast lineage. Biochem. Cell Biol. 76, 899–910.10.1139/o99-005Search in Google Scholar
Bachl, N., Derman, W., Engebretsen, L., Goldspink, G., Kinzlbauer, M., Tschan, H., Volpi, P., Venter, D., and Wessner, B. (2010). Therapeutic use of growth factors in the musculoskeletal system in sports-related injuries. J. Sports Med. Phys. Fitness 49, 346–357.Search in Google Scholar
Carmeliet, P. and Collen, D. (1999). Role of vascular endothelial growth factor and vascular endothelial growth factor receptors in vascular development. Curr. Top. Microbiol. Immunol. 237, 133–158.10.1007/978-3-642-59953-8_7Search in Google Scholar
Chen, C., Grzegorzewski, K.J., Barash, S., Zhao, Q., Schneider, H., Wang, Q., Singh, M., Pukac, L., Bell, A.C., Duan, R., et al. (2003). An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat. Biotechnol. 21, 294–301.10.1038/nbt795Search in Google Scholar
Chen, L., Jiang, W., Huang, J., He, B.C., Zuo, G.W., Zhang, W., Luo, Q., Shi, Q., Zhang, B.Q., Wagner, E.R., et al. (2010). Insulin-like growth factor 2 (IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. J. Bone Miner. Res. 25, 2447–2459.10.1002/jbmr.133Search in Google Scholar
Cheng, H., Jiang, W., Phillips, F.M., Haydon, R.C., Peng, Y., Zhou, L., Luu, H.H., An, N., Breyer, B., Vanichakarn, P., et al. (2003). Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J. Bone Joint Surg. Am. 85-A, 1544–1552.10.2106/00004623-200308000-00017Search in Google Scholar
Deckers, M.M., Karperien, M., van der Bent, C., Yamashita, T., Papapoulos, S.E., and Lowik, C.W. (2000). Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141, 1667–1674.10.1210/endo.141.5.7458Search in Google Scholar
Deng, Z.L., Sharff, K.A., Tang, N., Song, W.X., Luo, J., Luo, X., Chen, J., Bennett, E., Reid, R., Manning, D., et al. (2008). Regulation of osteogenic differentiation during skeletal development. Front. Biosci. 13, 2001–2021.10.2741/2819Search in Google Scholar
Ferrara, N. and Keyt, B. (1997). Vascular endothelial growth factor: basic biology and clinical implications. EXS 79, 209–232.10.1201/9781420004298.ch2Search in Google Scholar
Franceschi, R.T., Wang, D., Krebsbach, P.H., and Rutherford, R.B. (2000). Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J. Cell. Biochem. 78, 476–486.10.1002/1097-4644(20000901)78:3<476::AID-JCB12>3.0.CO;2-5Search in Google Scholar
He, T.C., Zhou, S., da Costa, L.T., Yu, J., Kinzler, K.W., and Vogelstein, B. (1998). A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514.10.1073/pnas.95.5.2509Search in Google Scholar PubMed PubMed Central
Hogan, B.L. (1996). Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580–1594.10.1101/gad.10.13.1580Search in Google Scholar PubMed
Hu, N., Jiang, D., Huang, E., Liu, X., Li, R., Liang, X., Kim, S.H., Chen, X., Gao, J.L., Zhang, H., et al. (2013). BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J. Cell Sci. 126, 532–541.10.1242/jcs.114231Search in Google Scholar PubMed PubMed Central
Huang, E., Zhu, G., Jiang, W., Yang, K., Gao, Y., Luo, Q., Gao, J.L., Kim, S.H., Liu, X., Li, M., et al. (2012). Growth hormone synergizes with BMP9 in osteogenic differentiation by activating the JAK/STAT/IGF1 pathway in murine multilineage cells. J. Bone Miner. Res. 27, 1566–1575.10.1002/jbmr.1622Search in Google Scholar PubMed
Kang, Q., Sun, M.H., Cheng, H., Peng, Y., Montag, A.G., Deyrup, A.T., Jiang, W., Luu, H.H., Luo, J., Szatkowski, J.P., et al. (2004). Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 11, 1312–1320.10.1038/sj.gt.3302298Search in Google Scholar PubMed
Kang, Q., Song, W.X., Luo, Q., Tang, N., Luo, J., Luo, X., Chen, J., Bi, Y., He, B.C., Park, J.K., et al. (2009). A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem. Cells Dev. 18, 545–559.10.1089/scd.2008.0130Search in Google Scholar PubMed PubMed Central
Kempen, D.H., Lu, L., Heijink, A., Hefferan, T.E., Creemers, L.B., Maran, A., Yaszemski, M.J., and Dhert, W.J. (2009). Effect of local sequential VEGF and BMP-2 delivery on ectopic and orthotopic bone regeneration. Biomaterials 30, 2816–2825.10.1016/j.biomaterials.2009.01.031Search in Google Scholar PubMed
Koch, S., Tugues, S., Li, X., Gualandi, L., and Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169–183.10.1042/BJ20110301Search in Google Scholar PubMed
Li, G., Peng, H., Corsi, K., Usas, A., Olshanski, A., and Huard, J. (2005). Differential effect of BMP4 on NIH/3T3 and C2C12 cells: implications for endochondral bone formation. J. Bone Miner. Res. 20, 1611–1623.10.1359/JBMR.050513Search in Google Scholar PubMed
Li, C.J., Madhu, V., Balian, G., Dighe, A.S., and Cui, Q. (2015). Cross-talk between VEGF and BMP-6 pathways accelerates osteogenic differentiation of human adipose-derived stem cells. J. Cell. Physiol. 230, 2671–2682.10.1002/jcp.24983Search in Google Scholar PubMed
Liu, X., Qin, J., Luo, Q., Bi, Y., Zhu, G., Jiang, W., Kim, S.H., Li, M., Su, Y., Nan, G., et al. (2013). Cross-talk between EGF and BMP9 signalling pathways regulates the osteogenic differentiation of mesenchymal stem cells. J. Cell. Mol. Med. 17, 1160–1172.10.1111/jcmm.12097Search in Google Scholar
Liu, Y., Liu, Y., Zhang, R., Wang, X., Huang, F., Yan, Z., Nie, M., Huang, J., Wang, Y., Wang, Y., et al. (2014). All-trans retinoic acid modulates bone morphogenic protein9-induced osteogenesis and adipogenesis of preadipocytes through BMP/Smad and Wnt/β-catenin signaling pathways. Int. J. Biochem. Cell Biol. 47, 47–56.10.1016/j.biocel.2013.11.018Search in Google Scholar
Lopez-Coviella, I., Berse, B., Krauss, R., Thies, R.S., and Blusztajn, J.K. (2000). Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289, 313–316.10.1126/science.289.5477.313Search in Google Scholar
Luo, Q., Kang, Q., Si, W., Jiang, W., Park, J.K., Peng, Y., Li, X., Luu, H.H., Luo, J., Montag, A.G., et al. (2004). Connective tissue growth factor (CTGF) is regulated by Wnt and bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymal stem cells. J Biol. Chem. 279, 55958–55968.10.1074/jbc.M407810200Search in Google Scholar
Luo, J., Deng, Z.L., Luo, X., Tang, N., Song, W.X., Chen, J., Sharff, K.A., Luu, H.H., Haydon, R.C., Kinzler, K.W., et al. (2007). A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2, 1236–1247.10.1038/nprot.2007.135Search in Google Scholar
Luo, X., Chen, J., Song, W.X., Tang, N., Luo, J., Deng, Z.L., Sharff, K.A., He, G., Bi, Y., He, B.C., et al. (2008). Osteogenic BMPs promote tumor growth of human osteosarcomas that harbor differentiation defects. Lab. Invest. 88, 1264–1277.10.1038/labinvest.2008.98Search in Google Scholar
Luther, G., Wagner, E.R., Zhu, G., Kang, Q., Luo, Q., Lamplot, J., Bi, Y., Luo, X., Luo, J., Teven, C., et al. (2011). BMP-9 induced osteogenic differentiation of mesenchymal stem cells: molecular mechanism and therapeutic potential. Curr. Gene Ther. 11, 229–240.10.2174/156652311795684777Search in Google Scholar
Luu, H.H., Song, W.X., Luo, X., Manning, D., Luo, J., Deng, Z.L., Sharff, K.A., Montag, A.G., Haydon, R.C., and He, T.C. (2007). Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J. Orthop. Res. 25, 665–677.10.1002/jor.20359Search in Google Scholar
Mayr-Wohlfart, U., Waltenberger, J., Hausser, H., Kessler, S., Günther, K.P., Dehio, C., Puhl, W., and Brenner, R.E. (2002). Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30, 472–477.10.1016/S8756-3282(01)00690-1Search in Google Scholar
O’Dell, S.D. and Day, I.N. (1998). Insulin-like growth factor II (IGF-II). Int. J. Biochem. Cell Biol. 30, 767–771.10.1016/S1357-2725(98)00048-XSearch in Google Scholar
Olsen, B.R., Reginato, A.M., and Wang, W. (2000). Bone development. Annu. Rev. Cell Dev. Biol. 16, 191–220.10.1146/annurev.cellbio.16.1.191Search in Google Scholar
Peng, Y., Kang, Q., Cheng, H., Li, X., Sun, M.H., Jiang, W., Luu, H.H., Park, J.Y., Haydon, R.C., and He, T.C. (2003). Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J. Cell Biochem. 90, 1149–1165.10.1002/jcb.10744Search in Google Scholar
Peng, Y., Kang, Q., Luo, Q., Jiang, W., Si, W., Liu, B.A., Luu, H.H., Park, J.K., Li, X., Luo, J., et al. (2004). Inhibitor of DNA binding/differentiation helix-loop-helix proteins mediate bone morphogenetic protein-induced osteoblast differentiation of mesenchymal stem cells. J. Biol. Chem. 279, 32941–32949.10.1074/jbc.M403344200Search in Google Scholar
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., and Marshak, D.R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147.10.1126/science.284.5411.143Search in Google Scholar
Prockop, D.J. (1997). Marrow stromal cells as stem cells for nonhematopoietictissues. Science 276, 71–74.10.1126/science.276.5309.71Search in Google Scholar
Randhawa, R. and Cohen, P. (2005). The role of the insulin-like growth factor system in prenatal growth. Mol. Genet. Metab. 86, 84–90.10.1016/j.ymgme.2005.07.028Search in Google Scholar
Rastegar, F., Shenaq, D., Huang, J., Zhang, W., Zhang, B.Q., He, B.C., Chen, L., Zuo, G.W., Luo, Q., Shi, Q., et al. (2010). Mesenchymal stem cells: molecular characteristics and clinical applications. World J. Stem Cells 2, 67–80.10.4252/wjsc.v2.i4.67Search in Google Scholar
Sharff, K.A., Song, W.X., Luo, X., Tang, N., Luo, J., Chen, J., Bi, Y., He, B.C., Huang, J., Li, X., et al. (2009). Hey1 basic helix-loop-helix protein plays an important role in mediating BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. J Biol. Chem. 284, 649–659.10.1074/jbc.M806389200Search in Google Scholar
Shi, Y. and Massague, J. (2003). Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113, 685–700.10.1016/S0092-8674(03)00432-XSearch in Google Scholar
Steinert, A.F., Palmer, G.D., Pilapil, C., Noth, U., Evans, C.H., and Ghivizzani, S.C. (2009). Enhanced in vitro chondrogenesis of primary mesenchymal stem cells by combined gene transfer. Tissue Eng. Part A 15, 1127–1139.10.1089/ten.tea.2007.0252Search in Google Scholar PubMed PubMed Central
Tang, N., Song, W.X., Luo, J., Luo, X., Chen, J., Sharff, K.A., Bi, Y., He, B.C., Huang, J.Y., Zhu, G.H., et al. (2009). BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/β-catenin signalling. J. Cell. Mol. Med. 13, 2448–2464.10.1111/j.1582-4934.2008.00569.xSearch in Google Scholar PubMed PubMed Central
Truksa, J., Peng, H., Lee, P., and Beutler, E. (2006). Bone morphogenetic proteins 2, 4, and 9 stimulate murine hepcidin 1 expression independently of Hfe, transferrin receptor 2 (Tfr2), and IL-6. Proc. Natl. Acad. Sci. USA 103, 10289–10293.10.1073/pnas.0603124103Search in Google Scholar PubMed PubMed Central
Varga, A.C. and Wrana, J.L. (2005). The disparate role of BMP in stem cell biology. Oncogene 24, 5713–5721.10.1038/sj.onc.1208919Search in Google Scholar PubMed
Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S.R., Bouxsein, M.L., Faugere, M.C., Guldberg, R.E., Gerstenfeld, L.C., et al. (2007). The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616–1626.10.1172/JCI31581Search in Google Scholar PubMed PubMed Central
Wang, J.H., Liu, Y.Z., Yin, L.J., Chen, L., Huang, J., Liu, Y., Zhang, R.X., Zhou, L.Y., Yang, Q.J., Luo, J.Y., et al. (2013). BMP9 and COX-2 form an important regulatory loop in BMP9-induced osteogenic differentiation of mesenchymal stem cells. Bone 57, 311–321.10.1016/j.bone.2013.08.015Search in Google Scholar PubMed
Zelzer, E., McLean, W., Ng, Y.S., Fukai, N., Reginato, A.M., Lovejoy, S., D’Amore, P.A., and Olsen, B.R. (2002). Skeletal defects in VEGF(120/120) mice reveal multiple roles for VEGF in skeletogenesis. Development 129, 1893–1904.10.1242/dev.129.8.1893Search in Google Scholar PubMed
Zhang, J. and Li, L. (2005). BMP signaling and stem cell regulation. Dev. Biol. 284, 1–11.10.1016/j.ydbio.2005.05.009Search in Google Scholar PubMed
Zhang, W., Deng, Z.L., Chen, L., Zuo, G.W., Luo, Q., Shi, Q., Zhang, B.Q., Wagner, E.R., Rastegar, F., Kim, S.H., et al. (2010). Retinoic acids potentiate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One 5, e11917.10.1371/journal.pone.0011917Search in Google Scholar PubMed PubMed Central
Zhao, Y., Song, T., Wang, W., Wang, J., He, J., Wu, N., Tang, M., He, B.C., and Luo, J. (2012). P38 and ERK1/2 MAPKs act in opposition to regulate BMP9-induced osteogenic differentiation of mesenchymal progenitor cells. PLoS One 7, e43383.10.1371/journal.pone.0043383Search in Google Scholar PubMed PubMed Central
©2016 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Reviews
- Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction
- The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Genetic association of NAD(P)H quinone oxidoreductase (NQO1*2) polymorphism with NQO1 levels and risk of diabetic nephropathy
- Protein Structure and Function
- Troponins, intrinsic disorder, and cardiomyopathy
- Molecular Medicine
- Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance
- Cell Biology and Signaling
- Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation
- Proteolysis
- The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2
- Novel Techniques
- A systematic comparison of two new releases of exome sequencing products: the aim of use determines the choice of product
Articles in the same Issue
- Frontmatter
- Reviews
- Endocytosis of pro-inflammatory cytokine receptors and its relevance for signal transduction
- The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction
- Research Articles/Short Communications
- Genes and Nucleic Acids
- Genetic association of NAD(P)H quinone oxidoreductase (NQO1*2) polymorphism with NQO1 levels and risk of diabetic nephropathy
- Protein Structure and Function
- Troponins, intrinsic disorder, and cardiomyopathy
- Molecular Medicine
- Molecular mechanisms mediating the beneficial metabolic effects of [Arg4]tigerinin-1R in mice with diet-induced obesity and insulin resistance
- Cell Biology and Signaling
- Adenovirus-mediated expression of vascular endothelial growth factor-a potentiates bone morphogenetic protein9-induced osteogenic differentiation and bone formation
- Proteolysis
- The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2
- Novel Techniques
- A systematic comparison of two new releases of exome sequencing products: the aim of use determines the choice of product