Home The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2
Article
Licensed
Unlicensed Requires Authentication

The intact Kunitz domain protects the amyloid precursor protein from being processed by matriptase-2

  • Anna-Madeleine Beckmann , Konstantin Glebov , Jochen Walter , Olaf Merkel , Martin Mangold , Frederike Schmidt , Christoph Becker-Pauly , Michael Gütschow and Marit Stirnberg EMAIL logo
Published/Copyright: April 13, 2016

Abstract

Proteolytic processing of the amyloid precursor protein (APP) leads to amyloid-β (Aβ) peptides. So far, the mechanism of APP processing is insufficiently characterized at the molecular level. Whereas the knowledge of Aβ generation by several proteases has been expanded, the contribution of the Kunitz-type protease inhibitor domain (KPI) present in two major APP isoforms to the complex proteolytic processing of APP is poorly understood. In this study, we have identified KPI-containing APP as a very potent, slow-binding inhibitor for the membrane-bound proteolytic regulator of iron homeostasis matriptase-2 by forming stable complexes with its target protease in HEK cells. Inhibition and complex formation depend on the intact KPI domain. By inhibiting matriptase-2, KPI-containing APP is protected from matriptase-2-mediated proteolysis within the Aβ region, thus preventing the generation of N-terminally truncated Aβ.

Acknowledgments

The authors thank Dr. Marc Sylvester (Mass Spectrometry Unit, Institute of Biochemistry and Molecular Biology, University of Bonn) for performing MS experiments. A.M.B. and M.S. are supported by the German Research Foundation (DFG) Grant STI 660/1-1. M.M. and M.S. are supported by the Maria von Linden Program of the Gender Equality Center of the University of Bonn. J.W. is supported by the Collaborative Research Center SFB 645 ‘Regulation and manipulation of information flow within dynamic protein and lipid environments’ funded by the DFG. C.B.-P. is supported by the SFB 877 ‘Proteolysis as a Regulatory Event in Pathophysiology’ (project A9) and grant BE 4086/2-1 funded by the DFG.

References

Beckmann, A.-M., Maurer, E., Lülsdorff, V., Wilms, A., Furtmann, N., Bajorath, J., Gütschow, M., and Stirnberg, M. (2016). En route to new therapeutic options for iron overload diseases: Matriptase-2 as a target for Kunitz-type inhibitors. ChembioChem 17, 595–604.10.1002/cbic.201500651Search in Google Scholar PubMed

Bhasin, R., Van Nostrand, W.E., Saitoh, T., Donets, M.A., Barnes, E.A., Quitschke, W.W., and Goldgaber, D. (1991). Expression of active secreted forms of human amyloid beta-protein precursor by recombinant baculovirus-infected insect cells. Proc. Natl. Acad. Sci. USA 88, 10307–10311.10.1073/pnas.88.22.10307Search in Google Scholar PubMed PubMed Central

Bugge, T.H., List, K., and Szabo, R. (2007). Matriptase-dependent cell surface proteolysis in epithelial development and pathogenesis. Front. Biosci. 12, 5060–5070.10.2741/2448Search in Google Scholar PubMed

Dosa, S., Stirnberg, M., Lülsdorff, V., Häußler, D., Maurer, E., and Gütschow, M. (2012). Active site mapping of trypsin, thrombin and matriptase-2 by sulfamoyl benzamidines. Bioorg. Med. Chem. 20, 6489–6505.10.1016/j.bmc.2012.08.042Search in Google Scholar PubMed

Du, X., She, E., Gelbart, T., Truksa, J., Lee, P., Xia, Y., Khovananth, K., Mudd, S., Mann, N., Moresco, E.M., et al. (2008). The serine protease TMPRSS6 is required to sense iron deficiency. Science 320, 1088–1092.10.1126/science.1157121Search in Google Scholar PubMed PubMed Central

Eigenbrot, C., Ganesan, R., and Kirchhofer, D. (2010). Hepatocyte growth factor activator (HGFA): molecular structure and interactions with HGFA inhibitor-1 (HAI-1). FEBS J. 277, 2215–2222.10.1111/j.1742-4658.2010.07638.xSearch in Google Scholar PubMed

Evan, G.I., Lewis, G.K., Ramsay, G., and Bishop, J.M. (1985). Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5, 3610–3616.Search in Google Scholar

Farady, C.J. and Craik, C.S. (2010). Mechanisms of macromolecular protease inhibitors. ChembioChem 11, 2341–2346.10.1002/cbic.201000442Search in Google Scholar PubMed PubMed Central

Finberg, K.E., Heeney, M.M., Campagna, D.R., Aydinok, Y., Pearson, H.A., Hartman, K.R., Mayo, M.M., Samuel, S.M., Strouse, J.J., Markianos, K., et al. (2008). Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat. Genet. 40, 569–571.10.1038/ng.130Search in Google Scholar PubMed PubMed Central

Finberg, K.E., Whittlesey, R.L., Fleming, M.D., and Andrews, N.C. (2010). Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood 115, 3817–3826.10.1182/blood-2009-05-224808Search in Google Scholar PubMed PubMed Central

Folgueras, A.R., de Lara, F.M., Pendas, A.M., Garabaya, C., Rodriguez, F., Astudillo, A., Bernal, T., Cabanillas, R., Lopez-Otin, C., and Velasco, G. (2008). Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 112, 2539–2545.10.1182/blood-2008-04-149773Search in Google Scholar PubMed

Goldgaber, D., Lerman, M.I., McBride, O.W., Saffiotti, U., and Gajdusek, D.C. (1987). Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer’s disease. Science 235, 877–880.10.1126/science.3810169Search in Google Scholar PubMed

Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R. (1977). Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–74.10.1099/0022-1317-36-1-59Search in Google Scholar PubMed

Hooper, J.D., Clements, J.A., Quigley, J.P., and Antalis, T.M. (2001). Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J. Biol. Chem. 276, 857–860.10.1074/jbc.R000020200Search in Google Scholar PubMed

Jäckle, F., Schmidt, F., Wichert, R., Arnold, P., Prox, J., Mangold, M., Ohler, A., Pietrzik, C.U., Koudelka, T., Tholey, A., et al. (2015). Metalloprotease meprin beta is activated by transmembrane serine protease matriptase-2 at the cell surface thereby enhancing APP shedding. Biochem. J. 470, 91–103.10.1042/BJ20141417Search in Google Scholar PubMed

Jiang, J., Yang, J., Feng, P., Zuo, B., Dong, N., Wu, Q., and He, Y. (2014). N-glycosylation is required for matriptase-2 autoactivation and ectodomain shedding. J. Biol. Chem. 289, 19500–19507.10.1074/jbc.M114.555110Search in Google Scholar PubMed PubMed Central

Kall, L., Storey, J.D., MacCoss, M.J., and Noble, W.S. (2008). Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res. 7, 29–34.10.1021/pr700600nSearch in Google Scholar PubMed

Krijt, J., Fujikura, Y., Ramsay, A.J., Velasco, G., and Necas, E. (2011). Liver hemojuvelin protein levels in mice deficient in matriptase-2 (Tmprss6). Blood Cells Mol. Dis. 47, 133–137.10.1016/j.bcmd.2011.04.009Search in Google Scholar PubMed

LaFerla, F.M. and Oddo, S. (2005). Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol. Med. 11, 170–176.10.1016/j.molmed.2005.02.009Search in Google Scholar PubMed

Lin, C.Y., Anders, J., Johnson, M., and Dickson, R.B. (1999). Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J. Biol. Chem. 274, 18237–18242.10.1074/jbc.274.26.18237Search in Google Scholar PubMed

Lin, C.Y., Tseng, I.C., Chou, F.P., Su, S.F., Chen, Y.W., Johnson, M.D., and Dickson, R.B. (2008). Zymogen activation, inhibition, and ectodomain shedding of matriptase. Front. Biosci. 13, 621–635.10.2741/2707Search in Google Scholar PubMed

Maurer, E., Gütschow, M., and Stirnberg, M. (2013). Hepatocyte growth factor activator inhibitor type 2 (HAI-2) modulates hepcidin expression by inhibiting the cell surface protease matriptase-2. Biochem. J. 450, 583–593.10.1042/BJ20121518Search in Google Scholar

Maurer, E., Sisay, M.T., Stirnberg, M., Steinmetzer, T., Bajorath, J., and Gütschow, M. (2012). Insights into matriptase-2 substrate binding and inhibition mechanisms by analyzing active-site-mutated variants. ChemMedChem 7, 68–72.10.1002/cmdc.201100350Search in Google Scholar

Maxson, J,E., Chen, J., Enns, C.A., and Zhang, A.S. (2010). Matriptase-2- and proprotein convertase-cleaved forms of hemojuvelin have different roles in the down-regulation of hepcidin expression. J. Biol. Chem. 285, 39021–39028.10.1074/jbc.M110.183160Search in Google Scholar

Miller, G.S. and List, K. (2013). The matriptase-prostasin proteolytic cascade in epithelial development and pathology. Cell. Tissue Res. 351, 245–253.10.1007/s00441-012-1348-1Search in Google Scholar

Rogers J.T., Randall, J.D., Cahill, C.M., Eder, P.S., Huang, X., Gunshin, H., Leiter, L., McPhee, J., Sarang, S.S., Utsuki, T., et al. (2002). An iron-responsive element type II in the 5′-untranslated region of the Alzheimer’s amyloid precursor protein transcript. J. Biol. Chem. 277, 45518–45528.10.1074/jbc.M207435200Search in Google Scholar

Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M.M., Teplow, D.B., and Haass, C. (2001). Presenilin-dependent gamma-secretase processing of beta-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2, 835–841.10.1093/embo-reports/kve180Search in Google Scholar

Schmaier, A.H., Dahl, L.D., Hasan, A.A., Cines, D.B., Bauer, K.A., and Van Nostrand, W.E. (1995). Factor IXa inhibition by protease nexin-2/amyloid beta-protein precursor on phospholipid vesicles and cell membranes. Biochemistry 34, 1171–1178.10.1021/bi00004a010Search in Google Scholar

Selkoe, D.J. (1991). The molecular pathology of Alzheimer’s disease. Neuron 6, 487–498.10.1016/0896-6273(91)90052-2Search in Google Scholar

Shimokawa, M., Nakamura, K., Maruyama, K., Tagawa, K., Miyatake, T., Sugita, H., Ishiura, S., and Suzuki, K. (1993). Inhibitory spectra of purified protease nexin-II and related proteins towards cellular proteinases. Biochimie 75, 911–915.10.1016/0300-9084(93)90048-WSearch in Google Scholar

Silvestri, L., Pagani, A., Nai, A., De Domenico, I., Kaplan, J., and Camaschella, C. (2008). The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell. Metab. 8, 502–511.10.1016/j.cmet.2008.09.012Search in Google Scholar PubMed PubMed Central

Sisay, M.T., Steinmetzer, T., Stirnberg, M., Maurer, E., Hammami, M., Bajorath, J., and Gütschow, M. (2010). Identification of the first low-molecular-weight inhibitors of matriptase-2. J. Med. Chem. 53, 5523–5535.10.1021/jm100183eSearch in Google Scholar

Sisodia, S.S. (1992). Beta-amyloid precursor protein cleavage by a membrane-bound protease. Proc. Natl. Acad. Sci. USA 89, 6075–6079.10.1073/pnas.89.13.6075Search in Google Scholar

Stirnberg, M., Maurer, E., Horstmeyer, A., Kolp, S., Frank, S., Bald, T., Arenz, K., Janzer, A., Prager, K., Wunderlich, P., et al. (2010). Proteolytic processing of the serine protease matriptase-2: identification of the cleavage sites required for its autocatalytic release from the cell surface. Biochem. J. 430: 87–95.10.1042/BJ20091565Search in Google Scholar

Van Nostrand, W.E., Wagner, S.L., Suzuki, M., Choi, B.H., Farrow, J.S., Geddes, J.W., Cotman, C.W., and Cunningham, D.D. (1989). Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid beta-protein precursor. Nature 341, 546–549.10.1038/341546a0Search in Google Scholar

Van Nostrand, W.E., Wagner, S.L., Farrow, J.S., and Cunningham, D.D. (1990). Immunopurification and protease inhibitory properties of protease nexin-2/amyloid beta-protein precursor. J. Biol. Chem. 265, 9591–9594.10.1016/S0021-9258(19)38706-XSearch in Google Scholar

Vassar, R, Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., et al. (1999). Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741.10.1126/science.286.5440.735Search in Google Scholar PubMed

Velasco, G., Cal, S., Quesada, V., Sanchez, L.M., and Lopez-Otin, C. (2002). Matriptase-2, a membrane-bound mosaic serine proteinase predominantly expressed in human liver and showing degrading activity against extracellular matrix proteins. J. Biol. Chem. 277, 37637–37646.10.1074/jbc.M203007200Search in Google Scholar PubMed

Wong, B,X., Tsatsanis, A., Lim, L.Q., Adlard, P.A., Bush, A.I., and Duce, J.A. (2014). Beta-amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One 9, e114174.10.1371/journal.pone.0114174Search in Google Scholar PubMed PubMed Central

Zheng, H. and Koo, E.H. (2011). Biology and pathophysiology of the amyloid precursor protein. Mol. Neurodegener. 6, 27.10.1186/1750-1326-6-27Search in Google Scholar PubMed PubMed Central


Supplemental Material:

The online version of this article (DOI: 10.1515/hsz-2015-0263) offers supplementary material, available to authorized users.


Received: 2015-10-9
Accepted: 2016-4-11
Published Online: 2016-4-13
Published in Print: 2016-8-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2015-0263/html
Scroll to top button