Melanocytes are more responsive to IFN-γ and produce higher amounts of kynurenine than melanoma cells
-
Renan Orsati Clara
, Nadine Assmann
, Ana Carolina Ramos Moreno , Janine Baptista Coimbra , Nadine Nurenberger , Katja Dettmer-Wilde , Peter Josef Oefner und Ana Campa
Abstract
A key link between amino acid catabolism and immune regulation in cancer is the augmented tryptophan (Trp) catabolism through the kynurenine pathway (KP), a metabolic route induced by interferon-γ (IFN-γ) and related to poor prognosis in melanomas. Besides its role in cancer, IFN-γ plays a key role in the control of pigmentation homeostasis. Here we measured KP metabolites in human melanoma lines and skin melanocytes and fibroblasts in response to IFN-γ. In general, IFN-γ affected KP in skin cells more than in melanoma cells, supporting IFN-γ roles in skin physiology and that of stromal cells in modulating the tumor microenvironment.
Acknowledgments
This study was supported by Fundação de Amparo a Pesquisa do Estado de São Paulo – FAPESP (process 2010/18477-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (process 236462/2012-1), and the German Research Foundation (KFO262). We also acknowledge the scholarships awarded by FAPESP to R. Clara and A.C.R. Moreno, and from CNPq to R. Clara and J.B. Coimbra. Further, we thank Ariane Rivellis Julio for the preparation of Figure 1. The authors declare no conflict of interest.
References
Adams, S., Braidy, N., Bessesde, A., Brew, B.J., Grant, R., Teo, C., and Guillemin, G.J. (2012). The kynurenine pathway in brain tumor pathogenesis. Cancer Res. 72, 5649–5657.10.1158/0008-5472.CAN-12-0549Suche in Google Scholar PubMed
Cantor, J.R. and Sabatini, D.M. (2012). Cancer cell metabolism: one hallmark, many faces. Cancer Discov. 2, 881–898.10.1158/2159-8290.CD-12-0345Suche in Google Scholar PubMed PubMed Central
Chevolet, I., Speeckaert, R., Haspeslagh, M., Neyns, B., Krüse, V., Schreuer, M., Van Gele, M., Van Geel, N., and Brochez, L. (2014). Peritumoral indoleamine 2,3-dioxygenase expression in melanoma: an early marker of resistance to immune control? Br. J. Dermatol. 171, 987–995.10.1111/bjd.13100Suche in Google Scholar PubMed
Chiarugi, A., Dolle, C., Felici, R., and Ziegler, M. (2012). The NAD metabolome – a key determinant of cancer cell biology. Nat. Rev. Cancer 12, 741–752.10.1038/nrc3340Suche in Google Scholar PubMed
Christen, S., Peterhans, E., and Stocker, R. (1990). Antioxidant activities of some tryptophan-metabolites – possible implication for inflammatory diseases. Proc. Natl. Acad. Sci. USA 87, 2506–2510.10.1073/pnas.87.7.2506Suche in Google Scholar PubMed PubMed Central
Chung, K.-T. and Gadupudi, G.S. (2011). Possible roles of excess tryptophan metabolites in cancer. Environ. Mol. Mutagen 52, 81–104.10.1002/em.20588Suche in Google Scholar PubMed
Dettmer, K., Vogl, F.C., Ritter, A.P., Zhu, W., Nuernberger, N., Kreutz, M., Oefner, P.J., Gronwald, W., and Gottfried, E. (2013). Distinct metabolic differences between various human cancer and primary cells. Electrophoresis 34, 2836–2847.10.1002/elps.201300228Suche in Google Scholar PubMed
Dunn, G.P., Koebel, C.M., and Schreiber, R.D. (2006). Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848.10.1038/nri1961Suche in Google Scholar PubMed
Hoogduijn, M.J., Hitchcock, I.S., Smit, N.P.M., Gillbro, J.M., Schallreuter, K.U., and Genever, P.G. (2006). Glutamate receptors on human melanocytes regulate the expression of MiTF. Pigm. Cell R. 19, 58–67.10.1111/j.1600-0749.2005.00284.xSuche in Google Scholar PubMed
Keszthelyi, D., Troost, F.J., and Masclee, A.A.M. (2009). Understanding the role of tryptophan and serotonin metabolism in gastrointestinal function. Neurogastroent. Motil. 21, 1239–1249.10.1111/j.1365-2982.2009.01370.xSuche in Google Scholar PubMed
Leppanen, V.V. and Oka, M. (1963). Metabolism of tryptophan in cancer of various sites. Ann. Med. Exp. Biol. Fen. 41, 123–137.Suche in Google Scholar
Luecke, S., Backlund, M., Jux, B., Esser, C., Krutmann, J., and Rannug, A. (2010). The aryl hydrocarbon receptor (AHR), a novel regulator of human melanogenesis. Pigm. Cell Melanoma Res. 23, 828–833.10.1111/j.1755-148X.2010.00762.xSuche in Google Scholar
Natarajan, V.T., Ganju, P., Ramkumar, A., Grover, R., and Gokhale, R.S. (2014a). Multifaceted pathways protect human skin from UV radiation. Nat. Chem. Biol. 10, 542–551.10.1038/nchembio.1548Suche in Google Scholar
Natarajan, V.T., Ganju, P., Singh, A., Vijayan, V., Kirty, K., Yadav, S., Puntambekar, S., Bajaj, S., Dani, P.P., Kar, H.K., et al. (2014b). IFN-γ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proc. Natl. Acad. Sci. USA 111, 2301–2306.10.1073/pnas.1304988111Suche in Google Scholar
Opitz, C.A., Litzenburger, U.M., Sahm, F., Ott, M., Tritschler, I., Trump, S., Schumacher, T., Jestaedt, L., Schrenk, D., Weller, M., et al. (2011). An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478, 197–203.10.1038/nature10491Suche in Google Scholar
Ortwerth, B.J., Bhattacharyya, J., and Shipova, E. (2009). Tryptophan metabolites from young human lenses and the photooxidation of ascorbic acid by UVA light. Invest. Ophth. Vis. Sci. 50, 3311–3319.10.1167/iovs.08-2927Suche in Google Scholar
Peters, J.C. (1991). Tryptophan Nutrition and Metabolism – an overview. Adv. Exp. Med. Biol. 294, 345–358.10.1007/978-1-4684-5952-4_32Suche in Google Scholar
Sagan, D., Kocki, T., Kocki, J., and Szumilo, J. (2012). Serum kynurenic acid: possible association with invasiveness of non-small cell lung cancer. Asian Pac. J. Cancer Prev. 13, 4241–4244.10.7314/APJCP.2012.13.9.4741Suche in Google Scholar
Sahm, F., Oezen, I., Opitz, C.A., Radlwimmer, B., von Deimling, A., Ahrendt, T., Adams, S., Bode, H.B., Guillemin, G.J., Wick, W. et al. (2013). The endogenous tryptophan metabolite and NAD+ precursor quinolinic acid confers resistance of gliomas to oxidative stress. Cancer Res. 73, 3225–3234.10.1158/0008-5472.CAN-12-3831Suche in Google Scholar
Stone, T.W. and Perkins, M.N. (1981). Quinolinic acid – a potent endogenous excitant at amino-acid receptors in CNS. Eur. J. Pharmacol. 72, 411–412.10.1016/0014-2999(81)90587-2Suche in Google Scholar
Swann, J.B. and Smyth, M.J. (2007). Immune surveillance of tumors. J. Clin. Invest. 117, 1137–1146.10.1172/JCI31405Suche in Google Scholar PubMed PubMed Central
Teulings, F.A., Fokkens, W., Kaalen, J., and Vanderwe, B (1973). Concentration of free and conjugated 3-hydroxyanthranilic acid in urine of bladder tumor patients before and after therapy, measured with an enzymatic method. Brit. J. Cancer 27, 316–322.10.1038/bjc.1973.38Suche in Google Scholar PubMed PubMed Central
Weber, W.P., Feder-Mengus, C., Chiarugi, A., Rosenthal, R., Reschner, A., Schumacher, R., Zajac, P., Misteli, H., Frey, D.M., Oertli, D., et al. (2006). Differential effects of the tryptophan metabolite 3-hydroxyanthranilic acid on the proliferation of human CD8+ T cells induced by TCR triggering or homeostatic cytokines. Eur. J. Immunol. 36, 296–304.10.1002/eji.200535616Suche in Google Scholar PubMed
Weinlich, G., Murr, C., Richardsen, L., Winkler, C., and Fuchs, D. (2007). Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214, 8–14.10.1159/000096906Suche in Google Scholar PubMed
Zaher, S.S., Germain, C., Fu, H., Larkin, D.F.P., and George, A.J.T. (2011). 3-Hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival. Invest. Ophth. Vis. Sci. 52, 2640–2648.10.1167/iovs.10-5793Suche in Google Scholar PubMed PubMed Central
Zaidi, M.R., Davis, S., Noonan, F.P., Graff-Cherry, C., Hawley, T.S., Walker, R.L., Feigenbaum, L., Fuchs, E., Lyakh, L., Young, H.A., et al. (2011). Interferon-γ links ultraviolet radiation to melanomagenesis in mice. Nature 469, 548–U129.10.1038/nature09666Suche in Google Scholar PubMed PubMed Central
Zhu, W., Stevens, A.P., Dettmer, K., Gottfried, E., Hoves, S., Kreutz, M., Holler, E., Canelas, A.B., Kema, I., and Oefner, P.J. (2011). Quantitative profiling of tryptophan metabolites in serum, urine, and cell culture supernatants by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 401, 3249–3261.10.1007/s00216-011-5436-ySuche in Google Scholar PubMed
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- Reviews
- Ancestral protein reconstruction: techniques and applications
- Mapping the non-standardized biases of ribosome profiling
- Minireview
- The macromolecular crowding effect – from in vitro into the cell
- Research Articles/Short Communications
- Protein Structure and Function
- IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes
- Molecular Medicine
- Correlated overexpression of metadherin and SND1 in glioma cells
- Cell Biology and Signaling
- Melanoma differentiation-associated gene 5 is involved in the induction of stress granules and autophagy by protonophore CCCP
- Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals
- Melanocytes are more responsive to IFN-γ and produce higher amounts of kynurenine than melanoma cells
- Phenobarbital inhibits calpain activity and expression in mouse hepatoma cells
Artikel in diesem Heft
- Frontmatter
- Reviews
- Ancestral protein reconstruction: techniques and applications
- Mapping the non-standardized biases of ribosome profiling
- Minireview
- The macromolecular crowding effect – from in vitro into the cell
- Research Articles/Short Communications
- Protein Structure and Function
- IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes
- Molecular Medicine
- Correlated overexpression of metadherin and SND1 in glioma cells
- Cell Biology and Signaling
- Melanoma differentiation-associated gene 5 is involved in the induction of stress granules and autophagy by protonophore CCCP
- Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals
- Melanocytes are more responsive to IFN-γ and produce higher amounts of kynurenine than melanoma cells
- Phenobarbital inhibits calpain activity and expression in mouse hepatoma cells