IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes
-
Andreas Becker
Abstract
Secretory peptides and proteins are frequently modified by pyroglutamic acid (pE, pGlu) at their N-terminus. This modification is catalyzed by the glutaminyl cyclases QC and isoQC. Here, we decipher the roles of the isoenzymes by characterization of IsoQC-/- mice. These mice show a significant reduction of glutaminyl cyclase activity in brain and peripheral tissue, suggesting ubiquitous expression of the isoQC enzyme. An assay of substrate conversion in vivo reveals impaired generation of the pGlu-modified C-C chemokine ligand 2 (CCL2, MCP-1) in isoQC-/- mice. The pGlu-formation was also impaired in primary neurons, which express significant levels of QC. Interestingly, however, the formation of the neuropeptide hormone thyrotropin-releasing hormone (TRH), assessed by immunohistochemistry and hormonal analysis of hypothalamic-pituitary-thyroid axis, was not affected in isoQC-/-, which contrasts to QC-/-. Thus, the results reveal differential functions of isoQC and QC in the formation of the pGlu-peptides CCL2 and TRH. Substrates requiring extensive prohormone processing in secretory granules, such as TRH, are primarily converted by QC. In contrast, protein substrates such as CCL2 appear to be primarily converted by isoQC. The results provide a new example, how subtle differences in subcellular localization of enzymes and substrate precursor maturation might influence pGlu-product formation.
Acknowledgments
The authors thank D. Friedrich, E. Scheel and H.-H. Ludwig for their excellent technical assistance as well as K. Arendt for critically reading of the manuscript. This work was financially supported by the Investitionsbank Sachsen-Anhalt, grant# 1004/00082 to Probiodrug AG.
References
Alexandru, A., Jagla, W., Graubner, S., Becker, A., Bäuscher, C., Kohlmann, S., Sedlmeier, R., Raber, K., Cynis, H., Rönicke, R., et al. (2011). Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Abeta is induced by pyroglutamate-Aβ formation. J. Neurosci. 31, 12790–12801.10.1523/JNEUROSCI.1794-11.2011Search in Google Scholar PubMed PubMed Central
Augustin, M., Sedlmeier, R., Peters, T., Huffstadt, U., Kochmann, E., Simon, D., Schöniger, M., Garke-Mayerthaler, S., Laufs, J., Mayhaus, M., et al. (2005). Efficient and fast targeted production of murine models based on ENU mutagenesis. Mamm. Genome 16, 405–413.10.1007/s00335-004-3028-2Search in Google Scholar PubMed
Böckers, T., Kreutz, M., and Pohl, T. (1995). Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. J. Neuroendocrinol. 7, 445–453.10.1111/j.1365-2826.1995.tb00780.xSearch in Google Scholar PubMed
Cruz, I. and Nillni, E. (1996). Intracellular sites of prothyrotropin- releasing hormone processing. J. Biol. Chem. 271, 22736–22745.10.1074/jbc.271.37.22736Search in Google Scholar PubMed
Cynis, H., Schilling, S., Bodnár, M., Hoffmann, T., Heiser, U., Saido, T., and Demuth, H. (2006). Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim. Biophys. Acta 1764, 1618–1625.10.1016/j.bbapap.2006.08.003Search in Google Scholar PubMed
Cynis, H., Rahfeld, J., Stephan, A., Kehlen, A., Koch, B., Wermann, M., Demuth, H., and Schilling, S. (2008). Isolation of an isoenzyme of human glutaminyl cyclase: retention in the Golgi complex suggests involvement in the protein maturation machinery. J. Mol. Biol. 379, 966–980.10.1016/j.jmb.2008.03.078Search in Google Scholar PubMed
Cynis, H., Hoffmann, T., Friedrich, D., Kehlen, A., Gans, K., Kleinschmidt, M., Rahfeld, J., Wolf, R., Wermann, M., Stephan, A., et al. (2011). The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol. Med. 3, 545–558.10.1002/emmm.201100158Search in Google Scholar PubMed PubMed Central
De Kimpe, L., Bennis, A., Zwart, R., van Haastert, E., Hoozemans, J., and Scheper, W. (2012). Disturbed Ca2+ homeostasis increases glutaminyl cyclase expression; connecting two early pathogenic events in Alzheimer’s disease in vitro. PLoS One 7, e44674.10.1371/journal.pone.0044674Search in Google Scholar PubMed PubMed Central
Gong, J. and Clark-Lewis, I. (1995). Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J. Exp. Med. 181, 631–640.10.1084/jem.181.2.631Search in Google Scholar PubMed PubMed Central
Goren, H., Bauce, L., and Vale, W. (1977). Forces and structural limitations of binding of thyrotrophin-releasing factor to the thyrotrophin-releasing receptor: the pyroglutamic acid moiety. Mol. Pharmacol. 13, 606–614.Search in Google Scholar
Hartlage-Rübsamen, M., Staffa, K., Waniek, A., Wermann, M., Hoffmann, T., Cynis, H., Schilling, S., Demuth, H., and Rossner, S. (2009). Developmental expression and subcellular localization of glutaminyl cyclase in mouse brain. Int. J. Dev. Neurosci. 27, 825–835.10.1016/j.ijdevneu.2009.08.007Search in Google Scholar PubMed
Hartlage-Rübsamen, M., Morawski, M., Waniek, A., Jäger, C., Zeitschel, U., Koch, B., Cynis, H., Schilling, S., Schliebs, R., Demuth, H., et al. (2011). Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms. Acta Neuropathol. 121, 705–719.10.1007/s00401-011-0806-2Search in Google Scholar
Höfling, C., Indrischek, H., Höpcke, T., Waniek, A., Cynis, H., Koch, B., Schilling, S., Morawski, M., Demuth, H.U., Roßner, S., et al. (2014). Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC. Int. J. Dev. Neurosci. 36, 64-73.10.1016/j.ijdevneu.2014.05.008Search in Google Scholar
Huang, K., Liu, Y., Cheng, W., Ko, T., and Wang, A. (2005). Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl. Acad. Sci. USA 102, 13117–13122.10.1073/pnas.0504184102Search in Google Scholar
Huang, K., Liaw, S., Huang, W., Chia, C., Lo, Y., Chen, Y., and Wang, A. (2011). Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J. Biol. Chem. 286, 12439–12449.10.1074/jbc.M110.208595Search in Google Scholar
Iwatsubo, T., Saido, T., Mann, D., Lee, V., and Trojanowski, J. (1996). Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-β 42(43) deposit in diffuse plaques. Am. J. Pathol. 149, 1823–1830.Search in Google Scholar
Jawhar, S., Wirths, O., and Bayer, T. (2011a). Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J. Biol. Chem 286, 38825–38832.10.1074/jbc.R111.288308Search in Google Scholar
Jawhar, S., Wirths, O., Schilling, S., Graubner, S., Demuth, H., and Bayer, T. (2011b). Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate Aβ formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J. Biol. Chem 286, 4454–4460.10.1074/jbc.M110.185819Search in Google Scholar
Li, Q., Liu, Z., Monroe, H., and Culiat, C. (2002). Integrated platform for detection of DNA sequence variants using capillary array electrophoresis. Electrophoresis 23, 1499–1511.10.1002/1522-2683(200205)23:10<1499::AID-ELPS1499>3.0.CO;2-XSearch in Google Scholar
Mason, A., Hayflick, J., Zoeller, R., Young, W., Phillips, H., Nikolics, K., and Seeburg, P. (1986). A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in the hpg mouse. Science 234, 1366–1371.10.1126/science.3024317Search in Google Scholar
Morawski, M., Hartlage-Rübsamen, M., Jäger, C., Waniek, A., Schilling, S., Schwab, C., McGeer, P., Arendt, T., Demuth, H., and Roßner, S. (2010). Distinct glutaminyl cyclase expression in Edinger-Westphal nucleus, locus coeruleus and nucleus basalis Meynert contributes to pGlu-Abeta pathology in Alzheimer’s disease. Acta Neuropathol. 120, 195–207.10.1007/s00401-010-0685-ySearch in Google Scholar
Nillni, E. (1999). Neuroregulation of ProTRH biosynthesis and processing. Endocrine 10, 185–199.10.1007/BF02738618Search in Google Scholar
Nillni, E. and Sevarino, K. (1999). The biology of pro-thyrotropin-releasing hormone-derived peptides. Endocr. Rev. 20, 599–648.Search in Google Scholar
Osmand, A., Berthelier, V., and Wetzel, R. (2006). Imaging polyglutamine deposits in brain tissue. Methods Enzymol. 412, 106–122.10.1016/S0076-6879(06)12008-XSearch in Google Scholar
Saido, T., Iwatsubo, T., Mann, D., Shimada, H., Ihara, Y., and Kawashima, S. (1995). Dominant and differential deposition of distinct beta-amyloid peptide species, Aβ N3(pE), in senile plaques. Neuron 14, 457–466.10.1016/0896-6273(95)90301-1Search in Google Scholar
Saul, A., Lashley, T., Revesz, T., Holton, J., Ghiso, J., Coomaraswamy, J., and Wirths, O. (2013). Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiol. Aging 34, 1416–1425.10.1016/j.neurobiolaging.2012.11.014Search in Google Scholar PubMed PubMed Central
Schilling, S., Lindner, C., Koch, B., Wermann, M., Rahfeld, J., Bohlen, A., Rudolph, T., Reuter, G., and Demuth, H. (2007). Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization. Biochemistry 46, 10921–10930.10.1021/bi701043xSearch in Google Scholar PubMed
Schilling, S., Appl, T., Hoffmann, T., Cynis, H., Schulz, K., Jagla, W., Friedrich, D., Wermann, M., Buchholz, M., Heiser, U., et al. (2008a). Inhibition of glutaminyl cyclase prevents pGlu-Aβ formation after intracortical/hippocampal microinjection in vivo/in situ. J. Neurochem 106, 1225–1236.10.1111/j.1471-4159.2008.05471.xSearch in Google Scholar PubMed
Schilling, S., Zeitschel, U., Hoffmann, T., Heiser, U., Francke, M., Kehlen, A., Holzer, M., Hutter-Paier, B., Prokesch, M., Windisch, M., et al. (2008b). Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer’s disease-like pathology. Nat. Med. 14, 1106–1111.10.1038/nm.1872Search in Google Scholar PubMed
Schilling, S., Kohlmann, S., Bäuscher, C., Sedlmeier, R., Koch, B., Eichentopf, R., Becker, A., Cynis, H., Hoffmann, T., Berg, S., et al. (2011). Glutaminyl cyclase knock-out mice exhibit slight hypothyroidism but no hypogonadism: implications for enzyme function and drug development. J. Biol. Chem 286, 14199–14208.10.1074/jbc.M111.229385Search in Google Scholar PubMed PubMed Central
Sealfon, S., Weinstein, H., and Millar, R. (1997). Molecular mechanisms of ligand interaction with the gonadotropin-releasing hormone receptor. Endocr. Rev. 18, 180–205.10.1210/edrv.18.2.0295Search in Google Scholar PubMed
Seifert, F., Schulz, K., Koch, B., Manhart, S., Demuth, H., and Schilling, S. (2009). Glutaminyl cyclases display significant catalytic proficiency for glutamyl substrates. Biochemistry 48, 11831–11833.10.1021/bi9018835Search in Google Scholar PubMed
Stephan, A., Wermann, M., Bohlen, A. von, Koch, B., Cynis, H., Demuth, H., and Schilling, S. (2009). Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. FEBS J. 276, 6522–6536.10.1111/j.1742-4658.2009.07337.xSearch in Google Scholar PubMed
Yamada, M., Saga, Y., Shibusawa, N., Hirato, J., Murakami, M., Iwasaki, T., Hashimoto, K., Satoh, T., Wakabayashi, K., Taketo, M., et al. (1997). Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc. Natl. Acad. Sci. USA 94, 10862–10867.10.1073/pnas.94.20.10862Search in Google Scholar PubMed PubMed Central
Yamada, M., Satoh, T., and Mori, M. (2003). Mice lacking the thyrotropin-releasing hormone gene: what do they tell us? Thyroid 13, 1111–1121.10.1089/10507250360731505Search in Google Scholar PubMed
Supplemental Material:
The online version of this article (DOI: 10.1515/hsz-2015-0192) offers supplementary material, available to authorized users.
©2016 by De Gruyter
Articles in the same Issue
- Frontmatter
- Reviews
- Ancestral protein reconstruction: techniques and applications
- Mapping the non-standardized biases of ribosome profiling
- Minireview
- The macromolecular crowding effect – from in vitro into the cell
- Research Articles/Short Communications
- Protein Structure and Function
- IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes
- Molecular Medicine
- Correlated overexpression of metadherin and SND1 in glioma cells
- Cell Biology and Signaling
- Melanoma differentiation-associated gene 5 is involved in the induction of stress granules and autophagy by protonophore CCCP
- Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals
- Melanocytes are more responsive to IFN-γ and produce higher amounts of kynurenine than melanoma cells
- Phenobarbital inhibits calpain activity and expression in mouse hepatoma cells
Articles in the same Issue
- Frontmatter
- Reviews
- Ancestral protein reconstruction: techniques and applications
- Mapping the non-standardized biases of ribosome profiling
- Minireview
- The macromolecular crowding effect – from in vitro into the cell
- Research Articles/Short Communications
- Protein Structure and Function
- IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes
- Molecular Medicine
- Correlated overexpression of metadherin and SND1 in glioma cells
- Cell Biology and Signaling
- Melanoma differentiation-associated gene 5 is involved in the induction of stress granules and autophagy by protonophore CCCP
- Suberoylanilide hydroxamic acid (SAHA) promotes the epithelial mesenchymal transition of triple negative breast cancer cells via HDAC8/FOXA1 signals
- Melanocytes are more responsive to IFN-γ and produce higher amounts of kynurenine than melanoma cells
- Phenobarbital inhibits calpain activity and expression in mouse hepatoma cells