Home Life Sciences Evolutionary divergence of Threonine Aspartase1 leads to species-specific substrate recognition
Article
Licensed
Unlicensed Requires Authentication

Evolutionary divergence of Threonine Aspartase1 leads to species-specific substrate recognition

  • Désirée Wünsch , Angelina Hahlbrock , Christina Heiselmayer , Sandra Bäcker , Christian Schrenk , Franziska Benne , Oliver Schilling and Shirley K. Knauer ORCID logo EMAIL logo
Published/Copyright: February 4, 2015

Abstract

Proteases are key regulators of life. Human Threonine Aspartase1 processes substrates, such as the mixed-lineage leukemia (MLL) protein, containing two cleavage sites, CS1 and CS2. Likewise, MLL’s Drosophila ortholog trithorax is cleaved by Drosophila Threonine Aspartase1 (dTasp), suggesting a mechanistic coevolution. However, a detailed analysis of dTasp’s function was missing so far. Here, active and inactive dTasp mutants allowed to compare substrate recognition and cleavage site selectivity of human and Drosophila enzymes. In contrast to the human protease, our cell-based assay revealed a preferential processing of CS2-like (QLD↓Gx[xD/Dx]) targets for dTasp, whereas cleavage of CS1-like targets (QVD↓Gx[xD/Dx]) was significantly impaired. Systematic mutagenesis of the CS2 sequence defined the motif x[FILMW]D↓Gx[xD/Dx] as the consensus cleavage sequence for dTasp. Substrate species selectivity of the enzymes was uncovered by demonstrating that dTasp cleaves Drosophila TFIIA, but not the human ortholog, suggesting evolutionary divergence of TFIIA downstream networks. Also, Drosophila USF2 was neither predicted nor cleaved by dTasp. Moreover, we found that dTasp cleavage site selectivity is independent of heterocomplex formation, as dTasp exists predominantly as an αβ-monomer. Collectively, we provide novel insights into evolutionary similarities and divergence concerning Threonine Aspartase1 function in different species, which may aid to dissect and better target human Threonine Aspartase1 in malignancies.

Keywords: Drosophila; fly; MLL; TFIIA; Trx; USF2

Corresponding author: Shirley K. Knauer, Institute for Molecular Biology II, Centre for Medical Biotechnology (ZMB), Mainz Screening Center UG & Co. KG, University of Duisburg-Essen, D-45141 Essen, Germany, e-mail:

Acknowledgments

We thank Sandra Friedl for her excellent technical assistance.

Conflict of interest: The authors declare that they have no conflict of interest.

Grant support: Fritz Thyssen Stiftung.

References

Bier, C., Knauer, S.K., Docter, D., Schneider, G., Kramer, O.H., and Stauber, R.H. (2011a). The importin-a/nucleophosmin switch controls taspase1 protease function. Traffic (Copenhagen) 12, 703–714.10.1111/j.1600-0854.2011.01191.xSearch in Google Scholar PubMed

Bier, C., Knauer, S.K., Klapthor, A., Schweitzer, A., Rekik, A., Kramer, O.H., Marschalek, R., and Stauber, R.H. (2011b). Cell-based analysis of structure-function activity of threonine aspartase 1. J. Biol. Chem. 286, 3007–3017.10.1074/jbc.M110.161646Search in Google Scholar PubMed PubMed Central

Bier, C., Hecht, R., Kunst, L., Scheiding, S., Wunsch, D., Goesswein, D., Schneider, G., Kramer, O.H., Knauer, S.K., and Stauber, R.H. (2012a). Overexpression of the catalytically impaired Taspase1 T234V or Taspase1 D233A variants does not have a dominant negative effect in T(4;11) leukemia cells. PloS One 7, e34142.10.1371/journal.pone.0034142Search in Google Scholar PubMed PubMed Central

Bier, C., Knauer, S.K., Wunsch, D., Kunst, L., Scheiding, S., Kaiser, M., Ottmann, C., Kramer, O.H., and Stauber, R.H. (2012b). Allosteric inhibition of Taspase1’s pathobiological activity by enforced dimerization in vivo. FASEB J. 26, 3421–3429.10.1096/fj.11-202432Search in Google Scholar PubMed

Capotosti, F., Hsieh, J.J., and Herr, W. (2007). Species selectivity of mixed-lineage leukemia/trithorax and HCF proteolytic maturation pathways. Mol. Cell Biol. 27, 7063–7072.10.1128/MCB.00769-07Search in Google Scholar PubMed PubMed Central

Chen, D.Y., Liu, H., Takeda, S., Tu, H.C., Sasagawa, S., Van Tine, B.A., Lu, D., Cheng, E.H., and Hsieh, J.J. (2010). Taspase1 functions as a non-oncogene addiction protease that coordinates cancer cell proliferation and apoptosis. Cancer Res. 70, 5358–5367.10.1158/0008-5472.CAN-10-0027Search in Google Scholar PubMed PubMed Central

Dong, Y., Van Tine, B.A., Oyama, T., Wang, P.I., Cheng, E.H., and Hsieh, J.J. (2014). Taspase1 cleaves MLL1 to activate cyclin E for HER2/neu breast tumorigenesis. Cell Res. 24, 1354–1366.10.1038/cr.2014.129Search in Google Scholar PubMed PubMed Central

Engels, K., Knauer, S.K., Metzler, D., Simf, C., Struschka, O., Bier, C., Mann, W., Kovacs, A.F., and Stauber, R.H. (2007). Dynamic intracellular survivin in oral squamous cell carcinoma: underlying molecular mechanism and potential as an early prognostic marker. J. Pathol. 211, 532–540.10.1002/path.2134Search in Google Scholar PubMed

Fetz, V., Bier, C., Habtemichael, N., Schuon, R., Schweitzer, A., Kunkel, M., Engels, K., Kovacs, A.F., Schneider, S., Mann, W., et al. (2009a). Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin. Int. J. Cancer 124, 2033–2041.10.1002/ijc.24182Search in Google Scholar PubMed

Fetz, V., Knauer, S.K., Bier, C., von Kries, J.P., and Stauber, R.H. (2009b). Translocation biosensors – cellular system integrators to dissect CRM1-dependent nuclear export by chemicogenomics. Sensors (Basel) 9, 5423–5445.10.3390/s90705423Search in Google Scholar PubMed PubMed Central

Habtemichael, N., Heinrich, U.R., Knauer, S.K., Schmidtmann, I., Bier, C., Docter, D., Brochhausen, C., Helling, K., Brieger, J., Stauber, R.H., et al. (2010). Expression analysis suggests a potential cytoprotective role of Birc5 in the inner ear. Mol. Cell. Neurosci. 45, 297–305.10.1016/j.mcn.2010.07.003Search in Google Scholar PubMed

Hsieh, J.J., Cheng, E.H., and Korsmeyer, S.J. (2003). Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115, 293–303.10.1016/S0092-8674(03)00816-XSearch in Google Scholar

Khan, J.A., Dunn, B.M., and Tong, L. (2005). Crystal structure of human Taspase1, a crucial protease regulating the function of MLL. Structure 13, 1443–1452.10.1016/j.str.2005.07.006Search in Google Scholar PubMed

Knauer, S.K. and Stauber, R.H. (2005). Development of an autofluorescent translocation biosensor system to investigate protein-protein interactions in living cells. Anal. Chem. 77, 4815–4820.10.1021/ac050413oSearch in Google Scholar PubMed

Knauer, S.K., Moodt, S., Berg, T., Liebel, U., Pepperkok, R., and Stauber, R.H. (2005). Translocation biosensors to study signal-specific nucleo-cytoplasmic transport, protease activity and protein-protein interactions. Traffic (Copenhagen) 6, 594–606.10.1111/j.1600-0854.2005.00298.xSearch in Google Scholar PubMed

Knauer, S.K., Bier, C., Schlag, P., Fritzmann, J., Dietmaier, W., Rodel, F., Klein-Hitpass, L., Kovacs, A.F., Doring, C., Hansmann, M.L., et al. (2007a). The survivin isoform survivin-3B is cytoprotective and can function as a chromosomal passenger complex protein. Cell Cycle 6, 1502–1509.10.4161/cc.6.12.4305Search in Google Scholar

Knauer, S.K., Kramer, O.H., Knosel, T., Engels, K., Rodel, F., Kovacs, A.F., Dietmaier, W., Klein-Hitpass, L., Habtemichael, N., Schweitzer, A., et al. (2007b). Nuclear export is essential for the tumor-promoting activity of survivin. FASEB J. 21, 207–216.10.1096/fj.06-5741comSearch in Google Scholar PubMed

Knauer, S.K., Fetz, V., Rabenstein, J., Friedl, S., Hofmann, B., Sabiani, S., Schroder, E., Kunst, L., Proschak, E., Thines, E., et al. (2011). Bioassays to monitor taspase1 function for the identification of pharmacogenetic inhibitors. PLoS One 6, e18253.10.1371/journal.pone.0018253Search in Google Scholar PubMed PubMed Central

Krämer, O.H., Knauer, S.K., Greiner, G., Jandt, E., Reichardt, S., Gührs, K.H., Stauber, R.H., Böhmer, F.D., and Heinzel, T. (2009). A phosphorylation-acetylation switch regulates STAT1 signaling. Genes Dev. 23, 223–235.10.1101/gad.479209Search in Google Scholar PubMed PubMed Central

Liu, H., Cheng, E.H., and Hsieh, J.J. (2007). Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21, 2385–2398.10.1101/gad.1574507Search in Google Scholar PubMed PubMed Central

Marschalek, R. (2010). Mixed lineage leukemia: roles in human malignancies and potential therapy. FEBS J. 277, 1822–1831.10.1111/j.1742-4658.2010.07608.xSearch in Google Scholar PubMed

Meyer, C., Schneider, B., Jakob, S., Strehl, S., Attarbaschi, A., Schnittger, S., Schoch, C., Jansen, M.W., van Dongen, J.J., den Boer, M.L., et al. (2006). The MLL recombinome of acute leukemias. Leukemia 20, 777–784.10.1038/sj.leu.2404150Search in Google Scholar PubMed

Olivier, J.P., Raabe, T., Henkemeyer, M., Dickson, B., Mbamalu, G., Margolis, B., Schlessinger, J., Hafen, E., and Pawson, T. (1993). A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73, 179–191.10.1016/0092-8674(93)90170-USearch in Google Scholar

Oyama, T., Sasagawa, S., Takeda, S., Hess, R.A., Lieberman, P.M., Cheng, E.H., and Hsieh, J.J. (2013). Cleavage of TFIIA by Taspase1 activates TRF2-specified mammalian male germ cell programs. Dev. Cell 27, 188–200.10.1016/j.devcel.2013.09.025Search in Google Scholar PubMed PubMed Central

Padeken, J., Mendiburo, M.J., Chlamydas, S., Schwarz, H.J., Kremmer, E., and Heun, P. (2013). The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol. Cell 50, 236–249.10.1016/j.molcel.2013.03.002Search in Google Scholar PubMed

Pandey, U.B. and Nichols, C.D. (2011). Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436.10.1124/pr.110.003293Search in Google Scholar PubMed PubMed Central

Pless, B., Oehm, C., Knauer, S., Stauber, R.H., Dingermann, T., and Marschalek, R. (2011). The heterodimerization domains of MLL-FYRN and FYRC are potential target structures in t(4;11) leukemia. Leukemia 25, 663–670.10.1038/leu.2010.308Search in Google Scholar PubMed

Schlingemann, J., Habtemichael, N., Ittrich, C., Toedt, G., Kramer, H., Hambek, M., Knecht, R., Lichter, P., Stauber, R.H., and Hahn, M. (2005). Patient-based cross-platform comparison of oligonucleotide microarray expression profiles. Lab. Invest. 85, 1024–1039.10.1038/labinvest.3700293Search in Google Scholar PubMed

Simon, M.A., Bowtell, D.D., Dodson, G.S., Laverty, T.R., and Rubin, G.M. (1991). Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell 67, 701–716.10.1016/0092-8674(91)90065-7Search in Google Scholar PubMed

Stauber, R.H., Bier, C., and Knauer, S.K. (2012). Targeting taspase1 for cancer therapy. Cancer Res. 72, 2912.10.1158/0008-5472.CAN-12-0150Search in Google Scholar PubMed

Takeda, S., Chen, D.Y., Westergard, T.D., Fisher, J.K., Rubens, J.A., Sasagawa, S., Kan, J.T., Korsmeyer, S.J., Cheng, E.H., and Hsieh, J.J. (2006). Proteolysis of MLL family proteins is essential for taspase1-orchestrated cell cycle progression. Genes Dev. 20, 2397–2409.10.1101/gad.1449406Search in Google Scholar PubMed PubMed Central

van den Boom, J., Mamic, M., Baccelliere, D., Zweerink, S., Kaschani, F., Knauer, S., Bayer, P., and Kaiser, M. (2014). Peptidyl succinimidyl peptides as taspase 1 inhibitors. Chembiochem 15, 2233–2237.10.1002/cbic.201402108Search in Google Scholar PubMed

Wunsch, D., Fetz, V., Heider, D., Tenzer, S., Bier, C., Kunst, L., Knauer, S., and Stauber, R. (2012). Chemico-genetic strategies to inhibit the leukemic potential of threonine aspartase-1. Blood Cancer J. 2, e77.10.1038/bcj.2012.22Search in Google Scholar PubMed PubMed Central

Zhou, H., Spicuglia, S., Hsieh, J.J., Mitsiou, D.J., Hoiby, T., Veenstra, G.J., Korsmeyer, S.J., and Stunnenberg, H.G. (2006). Uncleaved TFIIA is a substrate for taspase 1 and active in transcription. Mol. Cell Biol. 26, 2728–2735.10.1128/MCB.26.7.2728-2735.2006Search in Google Scholar PubMed PubMed Central


Supplemental Material

The online version of this article (DOI: 10.1515/hsz-2014-0318) offers supplementary material, available to authorized users.


Received: 2014-12-20
Accepted: 2015-2-2
Published Online: 2015-2-4
Published in Print: 2015-4-1

©2015 by De Gruyter

Downloaded on 8.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2014-0318/html
Scroll to top button