Abstract
Globin proteins are ubiquitous in living organisms and carry out a variety of functions related to the ability of their prosthetic heme group to bind gaseous ligands, such as oxygen, nitric oxide (NO), and CO. Moreover, they catalyze important reactions with nitrogen oxide species, such as NO dioxygenation and nitrite reduction. The formation of NO from nitrite is a reaction catalyzed by globins that has received increasing attention due to its potential as a hypoxic NO signaling mechanism. In this review, we revisit the current knowledge about the role of globins in NO formation and its physiological implications.
Acknowledgments
This work was supported by National Institutes of Health Grants HL098032, HL096973, DK085852 and funding from the Institute for Transfusion Medicine and the Hemophilia Center of Western Pennsylvania (to M.T.G), and by funding from the Competitive Medical Research Fund of the UPMC Health System (to J.T.).
References
Ascenzi, P., Tundo, G.R., Fanali, G., Coletta, M., and Fasano, M. (2013). Warfarin modulates the nitrite reductase activity of ferrous human serum heme-albumin. J. Biol. Inorg. Chem. 18, 939–946.10.1007/s00775-013-1040-2Suche in Google Scholar PubMed
Blank, M. and Burmester, T. (2012). Widespread occurrence of N-terminal acylation in animal globins and possible origin of respiratory globins from a membrane-bound ancestor. Mol. Biol. Evol. 29, 3553–3561.10.1093/molbev/mss164Suche in Google Scholar PubMed
Bruno, S., Faggiano, S., Spyrakis, F., Mozzarelli, A., Abbruzzetti, S., Grandi, E., Viappiani, C., Feis, A., Mackowiak, S., Smulevich, G., et al. (2007). The reactivity with CO of AHb1 and AHb2 from Arabidopsis thaliana is controlled by the distal HisE7 and internal hydrophobic cavities. J. Am. Chem. Soc. 129, 2880–2889.10.1021/ja066638dSuche in Google Scholar PubMed
Brunori, M., Giuffre, A., Nienhaus, K., Nienhaus, G.U., Scandurra, F.M., and Vallone, B. (2005). Neuroglobin, nitric oxide, and oxygen: functional pathways and conformational changes. Proc. Natl. Acad. Sci. USA 102, 8483–8488.10.1073/pnas.0408766102Suche in Google Scholar PubMed PubMed Central
Burmester, T. and Hankeln, T. (2009). What is the function of neuroglobin? J. Exp. Biol. 212, 1423–1428.10.1242/jeb.000729Suche in Google Scholar PubMed
Burmester, T., Ebner, B., Weich, B., and Hankeln, T. (2002). Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 19, 416–421.10.1093/oxfordjournals.molbev.a004096Suche in Google Scholar PubMed
Cosby, K., Partovi, K.S., Crawford, J.H., Patel, R.P., Reiter, C.D., Martyr, S., Yang, B.K., Waclawiw, M.A., Zalos, G., Xu, X., et al. (2003). Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505.10.1038/nm954Suche in Google Scholar PubMed
Daff, S. (2010). NO synthase: structures and mechanisms. Nitric Oxide 23, 1–11.10.1016/j.niox.2010.03.001Suche in Google Scholar PubMed
Dewilde, S., Kiger, L., Burmester, T., Hankeln, T., Baudin-Creuza, V., Aerts, T., Marden, M.C., Caubergs, R., and Moens, L. (2001). Biochemical characterization and ligand binding properties of neuroglobin, a novel member of the globin family. J. Biol. Chem. 276, 38949–38955.10.1074/jbc.M106438200Suche in Google Scholar PubMed
Doyle, M.P. and Hoekstra, J.W. (1981). Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J. Inorg. Biochem. 14, 351–358.10.1016/S0162-0134(00)80291-3Suche in Google Scholar
Doyle, M.P., Pickering, R.A., DeWeert, T.M., Hoekstra, J.W., and Pater, D. (1981). Kinetics and mechanism of the oxidation of human deoxyhemoglobin by nitrites. J. Biol. Chem. 256, 12393–12398.10.1016/S0021-9258(18)43285-1Suche in Google Scholar
Eich, R.F., Li, T., Lemon, D.D., Doherty, D.H., Curry, S.R., Aitken, J.F., Mathews, A.J., Johnson, K.A., Smith, R.D., Phillips, G.N., Jr., et al. (1996). Mechanism of NO-induced oxidation of myoglobin and hemoglobin. Biochemistry 35, 6976–6983.10.1021/bi960442gSuche in Google Scholar PubMed
Emara, M., Turner, A.R., and Allalunis-Turner, J. (2010). Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell Int. 10, 33.10.1186/1475-2867-10-33Suche in Google Scholar PubMed PubMed Central
Gabba, M., Abbruzzetti, S., Spyrakis, F., Forti, F., Bruno, S., Mozzarelli, A., Luque, F.J., Viappiani, C., Cozzini, P., Nardini, M., et al. (2013). CO rebinding kinetics and molecular dynamics simulations highlight dynamic regulation of internal cavities in human cytoglobin. PLoS One 8, e49770.10.1371/journal.pone.0049770Suche in Google Scholar PubMed PubMed Central
Gardner, P.R. (2005). Nitric oxide dioxygenase function and mechanism of flavohemoglobin, hemoglobin, myoglobin and their associated reductases. J. Inorg. Biochem. 99, 247–266.10.1016/j.jinorgbio.2004.10.003Suche in Google Scholar PubMed
Gardner, A.M. and Gardner, P.R. (2002). Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxide-scavenging activity. J. Biol. Chem. 277, 8166–8171.10.1074/jbc.M110470200Suche in Google Scholar PubMed
Gardner, A.M., Cook, M.R., and Gardner, P.R. (2010). Nitric-oxide dioxygenase function of human cytoglobin with cellular reductants and in rat hepatocytes. J. Biol. Chem. 285, 23850–23857.10.1074/jbc.M110.132340Suche in Google Scholar PubMed PubMed Central
Gladwin, M.T. and Kim-Shapiro, D.B. (2008). The functional nitrite reductase activity of the heme-globins. Blood 112, 2636–2647.10.1182/blood-2008-01-115261Suche in Google Scholar PubMed PubMed Central
Gladwin, M.T., Raat, N.J., Shiva, S., Dezfulian, C., Hogg, N., Kim-Shapiro, D.B., and Patel, R.P. (2006). Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am. J. Physiol. Heart Circ. Physiol. 291, H2026–2035.10.1152/ajpheart.00407.2006Suche in Google Scholar PubMed
Grubina, R., Huang, Z., Shiva, S., Joshi, M.S., Azarov, I., Basu, S., Ringwood, L.A., Jiang, A., Hogg, N., Kim-Shapiro, D.B., et al. (2007). Concerted nitric oxide formation and release from the simultaneous reactions of nitrite with deoxy- and oxyhemoglobin. J. Biol. Chem. 282, 12916–12927.10.1074/jbc.M700546200Suche in Google Scholar PubMed
Hamdane, D., Kiger, L., Dewilde, S., Green, B.N., Pesce, A., Uzan, J., Burmester, T., Hankeln, T., Bolognesi, M., Moens, L., et al. (2003). The redox state of the cell regulates the ligand binding affinity of human neuroglobin and cytoglobin. J. Biol. Chem. 278, 51713–51721.10.1074/jbc.M309396200Suche in Google Scholar PubMed
Hankeln, T., Wystub, S., Laufs, T., Schmidt, M., Gerlach, F., Saaler-Reinhardt, S., Reuss, S., and Burmester, T. (2004). The cellular and subcellular localization of neuroglobin and cytoglobin-a clue to their function? IUBMB Life 56, 671–679.10.1080/15216540500037794Suche in Google Scholar PubMed
Helms, C. and Kim-Shapiro, D.B. (2013). Hemoglobin-mediated nitric oxide signaling. Free Radic. Biol. Med. 61C, 464–472.10.1016/j.freeradbiomed.2013.04.028Suche in Google Scholar PubMed PubMed Central
Hill, B.G., Dranka, B.P., Bailey, S.M., Lancaster, J.R., Jr., and Darley-Usmar, V.M. (2010). What part of NO don’t you understand? Some answers to the cardinal questions in nitric oxide biology. J. Biol. Chem. 285, 19699–19704.10.1074/jbc.R110.101618Suche in Google Scholar PubMed PubMed Central
Hoshino, M., Maeda, M., Konishi, R., Seki, H., and Ford, P.C. (1996). Studies on the reaction mechanism for reductive nitrosylation of ferrihemoproteins in buffer solutions. J. Am. Chem. Soc. 118, 5702–5707.10.1021/ja953311wSuche in Google Scholar
Huang, K.T., Keszler, A., Patel, N., Patel, R.P., Gladwin, M.T., Kim-Shapiro, D.B., and Hogg, N. (2005a). The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry. J. Biol. Chem. 280, 31126–31131.10.1074/jbc.M501496200Suche in Google Scholar PubMed
Huang, Z., Shiva, S., Kim-Shapiro, D.B., Patel, R.P., Ringwood, L.A., Irby, C.E., Huang, K.T., Ho, C., Hogg, N., Schechter, A.N., et al. (2005b). Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J. Clin. Invest. 115, 2099–2107.10.1172/JCI24650Suche in Google Scholar PubMed PubMed Central
Jayaraman, T., Tejero, J., Chen, B.B., Blood, A.B., Frizzell, S., Shapiro, C., Tiso, M., Hood, B.L., Wang, X., Zhao, X., et al. (2011). 14-3-3 binding and phosphorylation of neuroglobin during hypoxia modulate six-to-five heme pocket coordination and rate of nitrite reduction to nitric oxide. J. Biol. Chem. 286, 42679–42689.10.1074/jbc.M111.271973Suche in Google Scholar PubMed PubMed Central
Keszler, A., Piknova, B., Schechter, A.N., and Hogg, N. (2008). The reaction between nitrite and oxyhemoglobin: a mechanistic study. J. Biol. Chem. 283, 9615–9622.10.1074/jbc.M705630200Suche in Google Scholar PubMed PubMed Central
Lechauve, C., Chauvierre, C., Dewilde, S., Moens, L., Green, B.N., Marden, M.C., Celier, C., and Kiger, L. (2010). Cytoglobin conformations and disulfide bond formation. FEBS J. 277, 2696–2704.10.1111/j.1742-4658.2010.07686.xSuche in Google Scholar
Li, H., Hemann, C., Abdelghany, T.M., El-Mahdy, M.A., and Zweier, J.L. (2012). Characterization of the mechanism and magnitude of cytoglobin-mediated nitrite reduction and nitric oxide generation under anaerobic conditions. J. Biol. Chem. 287, 36623–36633.10.1074/jbc.M112.342378Suche in Google Scholar PubMed PubMed Central
Liu, X., Follmer, D., Zweier, J.R., Huang, X., Hemann, C., Liu, K., Druhan, L.J., and Zweier, J.L. (2012). Characterization of the function of cytoglobin as an oxygen-dependent regulator of nitric oxide concentration. Biochemistry 51, 5072–5082.10.1021/bi300291hSuche in Google Scholar PubMed
Liu, X., Tong, J., Zweier, J.R., Follmer, D., Hemann, C., Ismail, R.S., and Zweier, J.L. (2013). Differences in oxygen-dependent nitric oxide metabolism by cytoglobin and myoglobin account for their differing functional roles. FEBS J. 280, 3621–3631.10.1111/febs.12352Suche in Google Scholar PubMed PubMed Central
Lundberg, J.O., Weitzberg, E., and Gladwin, M.T. (2008). The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167.10.1038/nrd2466Suche in Google Scholar PubMed
Pesce, A., Dewilde, S., Nardini, M., Moens, L., Ascenzi, P., Hankeln, T., Burmester, T., and Bolognesi, M. (2003). Human brain neuroglobin structure reveals a distinct mode of controlling oxygen affinity. Structure 11, 1087–1095.10.1016/S0969-2126(03)00166-7Suche in Google Scholar PubMed
Petersen, M.G., Dewilde, S., and Fago, A. (2008). Reactions of ferrous neuroglobin and cytoglobin with nitrite under anaerobic conditions. J. Inorg. Biochem. 102, 1777–1782.10.1016/j.jinorgbio.2008.05.008Suche in Google Scholar PubMed
Rassaf, T., Flogel, U., Drexhage, C., Hendgen-Cotta, U., Kelm, M., and Schrader, J. (2007). Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 100, 1749–1754.10.1161/CIRCRESAHA.107.152488Suche in Google Scholar PubMed
Rong, Z., Wilson, M.T., and Cooper, C.E. (2013). A model for the nitric oxide producing nitrite reductase activity of hemoglobin as a function of oxygen saturation. Nitric Oxide 33, 74–80.10.1016/j.niox.2013.06.008Suche in Google Scholar PubMed
Schmidt, M., Giessl, A., Laufs, T., Hankeln, T., Wolfrum, U., and Burmester, T. (2003). How does the eye breathe? Evidence for neuroglobin-mediated oxygen supply in the mammalian retina. J. Biol. Chem. 278, 1932–1935.10.1074/jbc.M209909200Suche in Google Scholar PubMed
Schmidt, M., Gerlach, F., Avivi, A., Laufs, T., Wystub, S., Simpson, J.C., Nevo, E., Saaler-Reinhardt, S., Reuss, S., Hankeln, T., et al. (2004). Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J. Biol. Chem. 279, 8063–8069.10.1074/jbc.M310540200Suche in Google Scholar PubMed
Shiva, S., Huang, Z., Grubina, R., Sun, J., Ringwood, L.A., MacArthur, P.H., Xu, X., Murphy, E., Darley-Usmar, V.M., and Gladwin, M.T. (2007). Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ. Res. 100, 654–661.10.1161/01.RES.0000260171.52224.6bSuche in Google Scholar PubMed
Smagghe, B.J., Trent, J.T., 3rd, and Hargrove, M.S. (2008). NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo. PLoS One 3, e2039.10.1371/journal.pone.0002039Suche in Google Scholar PubMed PubMed Central
Sturms, R., DiSpirito, A.A., and Hargrove, M.S. (2011). Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions. Biochemistry 50, 3873–3878.10.1021/bi2004312Suche in Google Scholar PubMed
Tejero, J., Ragireddy, V., Azarov, I., Corti, P., Frizzell, S., and Gladwin, M.T. (2011). Exploring the mechanism of fast nitrite reduction by five-coordinate neuroglobin. Free Radic. Biol. Med. 51, S150.10.1016/j.freeradbiomed.2011.10.260Suche in Google Scholar
Tejero, J., Basu, S., Helms, C., Hogg, N., King, S.B., Kim-Shapiro, D.B., and Gladwin, M.T. (2012). Low NO concentration dependence of reductive nitrosylation reaction of hemoglobin. J. Biol. Chem. 287, 18262–18274.10.1074/jbc.M111.298927Suche in Google Scholar PubMed PubMed Central
Tiso, M., Tejero, J., Basu, S., Azarov, I., Wang, X., Simplaceanu, V., Frizzell, S., Jayaraman, T., Geary, L., Shapiro, C., et al. (2011). Human neuroglobin functions as a redox-regulated nitrite reductase. J. Biol. Chem. 286, 18277–18289.10.1074/jbc.M110.159541Suche in Google Scholar PubMed PubMed Central
Tiso, M., Tejero, J., Kenney, C., Frizzell, S., and Gladwin, M.T. (2012). Nitrite reductase activity of nonsymbiotic hemoglobins from Arabidopsis thaliana. Biochemistry 51, 5285–5292.10.1021/bi300570vSuche in Google Scholar PubMed PubMed Central
Trent, J.T., 3rd and Hargrove, M.S. (2002). A ubiquitously expressed human hexacoordinate hemoglobin. J. Biol. Chem. 277, 19538–19545.10.1074/jbc.M201934200Suche in Google Scholar PubMed
Tsai, A.G., Johnson, P.C., and Intaglietta, M. (2003). Oxygen gradients in the microcirculation. Physiol. Rev. 83, 933–963.10.1152/physrev.00034.2002Suche in Google Scholar PubMed
Velmurugan, S., Kapil, V., Ghosh, S.M., Davies, S., McKnight, A., Aboud, Z., Khambata, R.S., Webb, A.J., Poole, A., and Ahluwalia, A. (2013). Antiplatelet effects of dietary nitrate in healthy volunteers: involvement of cGMP and influence of sex. Free Radic. Biol. Med. 65, 1521–1532.10.1016/j.freeradbiomed.2013.06.031Suche in Google Scholar PubMed PubMed Central
©2014 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Reviews
- The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes
- Human dyskerin: beyond telomeres
- Assembly and function of small RNA – Argonaute protein complexes
- Minireview
- The globin superfamily: functions in nitric oxide formation and decay
- Research Articles/Short Communications
- Protein Structure and Function
- N-homocysteinylation of apolipoprotein A-I impairs the protein’s antioxidant ability but not its cholesterol efflux capacity
- Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata
- A lysine-methionine exchange in a coronavirus surface protein transforms a retention motif into an endocytosis signal
- Cell Biology and Signaling
- Upregulation of the thioredoxin-dependent redox system during differentiation of 3T3-L1 cells to adipocytes
- Novel Techniques
- Shortening distance of forward and reverse primers for nucleic acid isothermal amplification
Artikel in diesem Heft
- Frontmatter
- Reviews
- The top skin-associated genes: a comparative analysis of human and mouse skin transcriptomes
- Human dyskerin: beyond telomeres
- Assembly and function of small RNA – Argonaute protein complexes
- Minireview
- The globin superfamily: functions in nitric oxide formation and decay
- Research Articles/Short Communications
- Protein Structure and Function
- N-homocysteinylation of apolipoprotein A-I impairs the protein’s antioxidant ability but not its cholesterol efflux capacity
- Lucimycin, an antifungal peptide from the therapeutic maggot of the common green bottle fly Lucilia sericata
- A lysine-methionine exchange in a coronavirus surface protein transforms a retention motif into an endocytosis signal
- Cell Biology and Signaling
- Upregulation of the thioredoxin-dependent redox system during differentiation of 3T3-L1 cells to adipocytes
- Novel Techniques
- Shortening distance of forward and reverse primers for nucleic acid isothermal amplification