Home Endocytic Rabs in membrane trafficking and signaling
Article
Licensed
Unlicensed Requires Authentication

Endocytic Rabs in membrane trafficking and signaling

  • Johannes Numrich and Christian Ungermann EMAIL logo
Published/Copyright: October 23, 2013

Abstract

The endolysosomal system controls the trafficking of proteins between the plasma membrane and the degradative environment of the lysosome. The early endosomal Rab5 and the late endosomal Rab7 GTPases have a key role in the transport along the endocytic pathway by recruiting tethering factors such as the hexameric CORVET and HOPS complexes that promote membrane fusion. Both Rabs are also involved in signaling at endosomal membranes and linked to amino acid sensing and autophagy, indicating that their role in trafficking may be connected to signal transduction and adaptation during cell stress. Here, we will summarize the current knowledge on the role of both Rab GTPases on both processes and discuss the possible crosstalk between them.


Corresponding author: Christian Ungermann, Department of Biology/Chemistry, Biochemistry Section, University of Osnabrück, Barbarastrasse 13, D-49076 Osnabrück, Germany, e-mail:

We thank Margarita Cabrera for comments and feedback. Research in the Ungermann laboratory is supported by the DFG (UN111/7-2) and the SFB 944 (Project P11). C.U. is supported by the Hans-Mühlenhoff Foundation.

References

Baker, R.W., Jeffrey, P.D., and Hughson, F.M. (2013). Crystal structures of the Sec1/Munc18 (SM) protein Vps33, alone and bound to the homotypic fusion and vacuolar protein sorting (HOPS) subunit Vps16*. PLoS ONE 8, e67409.10.1371/journal.pone.0067409Search in Google Scholar PubMed PubMed Central

Balderhaar, H.J.K. and Ungermann, C. (2013). CORVET and HOPS tethering complexes-coordinators of endosome and lysosome fusion. J. Cell Sci. 126, 1307–1316.10.1242/jcs.107805Search in Google Scholar PubMed

Balderhaar, H.J.K., Lachmann, J., Yavavli, E., Bröcker, C., Lürick, A., and Ungermann, C. (2013). The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc. Natl. Acad. Sci. USA 110, 3823–3828.10.1073/pnas.1221785110Search in Google Scholar PubMed PubMed Central

Bar-Peled, L. and Sabatini, D.M. (2012). SnapShot: mTORC1 signaling at the lysosomal surface. Cell 151, 1390–1390.e1.10.1016/j.cell.2012.11.038Search in Google Scholar PubMed

Barr, F.A. (2013). Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol. 202, 191–199.10.1083/jcb.201306010Search in Google Scholar PubMed PubMed Central

Barr, F. and Lambright, D.G. (2010). Rab GEFs and GAPs. Curr. Opin. Cell Biol. 22, 461–470.10.1016/j.ceb.2010.04.007Search in Google Scholar PubMed PubMed Central

Berchtold, D. and Walther, T.C. (2009). TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol. Biol. Cell 20, 1565–1575.10.1091/mbc.e08-10-1001Search in Google Scholar PubMed PubMed Central

Binda, M., Péli-Gulli, M.P., Bonfils, G., Panchaud, N., Urban, J., Sturgill, T.W., Loewith, R., and de Virgilio, C. (2009). The Vam6 GEF controls TORC1 by activating the EGO complex. Mol. Cell 35, 563–573.10.1016/j.molcel.2009.06.033Search in Google Scholar PubMed

Bonfils, G., Jaquenoud, M., Bontron, S., Ostrowicz, C., Ungermann, C., and de Virgilio, C. (2012). Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol. Cell 46, 105–110.10.1016/j.molcel.2012.02.009Search in Google Scholar PubMed

Bonifacino, J.S. and Glick, B.S. (2004). The mechanisms of vesicle budding and fusion. Cell 116, 153–166.10.1016/S0092-8674(03)01079-1Search in Google Scholar PubMed

Bos, J.L., Rehmann, H., and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865–877.10.1016/j.cell.2007.05.018Search in Google Scholar PubMed

Brett, C.L., Plemel, R.L., Lobingier, B.T., Lobinger, B.T., Vignali, M., Fields, S., and Merz, A.J. (2008). Efficient termination of vacuolar Rab GTPase signaling requires coordinated action by a GAP and a protein kinase. J. Cell Biol. 182, 1141–1151.10.1083/jcb.200801001Search in Google Scholar PubMed PubMed Central

Bridges, D., Fisher, K., Zolov, S.N., Xiong, T., Inoki, K., Weisman, L.S., and Saltiel, A.R. (2012a). Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J. Biol. Chem. 287, 20913–20921.10.1074/jbc.M111.334060Search in Google Scholar PubMed PubMed Central

Bridges, D., Ma, J.T., Park, S., Inoki, K., Weisman, L.S., and Saltiel, A.R. (2012b). Phosphatidylinositol 3,5-bisphosphate plays a role in the activation and subcellular localization of mechanistic target of rapamycin 1. Mol. Biol. Cell 23, 2955–2962.10.1091/mbc.e11-12-1034Search in Google Scholar PubMed PubMed Central

Bröcker, C., Kuhlee, A., Gatsogiannis, C., Kleine Balderhaar, H.J., Hönscher, C., Engelbrecht-Vandré, S., Ungermann, C., and Raunser, S. (2012). Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc. Natl. Acad. Sci. USA 109, 1991–1996.10.1073/pnas.1117797109Search in Google Scholar PubMed PubMed Central

Cabrera, M., Arlt, H., Epp, N., Lachmann, J., Griffith, J., Perz, A., Reggiori, F., and Ungermann, C. (2013). Functional separation of endosomal fusion factors and the class c core vacuole/endosome tethering (CORVET) complex in endosome biogenesis. J. Biol. Chem. 288, 5166–5175.10.1074/jbc.M112.431536Search in Google Scholar PubMed PubMed Central

Cabrera, M. and Ungermann, C. (2013). Guanine nucleotide exchange factors (GEFs) have a critical but not exclusive role in organelle localization of Rab GTPases. J. Biol. Chem. 288, 28704–28712.10.1074/jbc.M113.488213Search in Google Scholar PubMed PubMed Central

Carney, D., Davies, B., and Horazdovsky, B. (2006). Vps9 domain-containing proteins: activators of Rab5 GTPases from yeast to neurons. Trends Cell Biol. 16, 27–35.10.1016/j.tcb.2005.11.001Search in Google Scholar PubMed

Chen, Y. and Klionsky, D.J. (2011). The regulation of autophagy-unanswered questions. J. Cell Sci. 124, 161–170.10.1242/jcs.064576Search in Google Scholar PubMed PubMed Central

Christoforidis, S., Miaczynska, M., Ashman, K., Wilm, M., Zhao, L., Yip, S., Waterfield, M., Backer, J., and Zerial, M. (1999). Phosphatidylinositol-3-OH kinases are Rab5 effectors. Nat. Cell Biol. 1, 249–252.10.1038/12075Search in Google Scholar PubMed

Collins, K., Thorngren, N., Fratti, R., and Wickner, W. (2005). Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J. 24, 1775–1786.10.1038/sj.emboj.7600658Search in Google Scholar PubMed PubMed Central

Dubouloz, F., Deloche, O., Wanke, V., Cameroni, E., and de Virgilio, C. (2005). The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol. Cell 19, 15–26.10.1016/j.molcel.2005.05.020Search in Google Scholar PubMed

Durán, R.V. and Hall, M.N. (2012). Regulation of TOR by small GTPases. EMBO Rep. 13, 121–128.10.1038/embor.2011.257Search in Google Scholar PubMed PubMed Central

Epp, N. and Ungermann, C. (2013). The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes. PLoS One 8, e67307.10.1371/journal.pone.0067307Search in Google Scholar PubMed PubMed Central

Flinn, R.J., Yan, Y., Goswami, S., Parker, P.J., and Backer, J.M. (2010). The late endosome is essential for mTORC1 signaling. Mol. Biol. Cell 21, 833–841.10.1091/mbc.e09-09-0756Search in Google Scholar PubMed PubMed Central

Gao, X.D., Albert, S., Tcheperegine, S.E., Burd, C.G., Gallwitz, D., and Bi, E. (2003). The GAP activity of Msb3p and Msb4p for the Rab GTPase Sec4p is required for efficient exocytosis and actin organization. J. Cell Biol. 162, 635–646.10.1083/jcb.200302038Search in Google Scholar PubMed PubMed Central

Gerondopoulos, A., Langemeyer, L., Liang, J.R., Linford, A., and Barr, F.A. (2012). BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22, 2135–2139.10.1016/j.cub.2012.09.020Search in Google Scholar PubMed PubMed Central

Graham, S.C., Wartosch, L., Gray, S.R., Scourfield, E.J., Deane, J.E., Luzio, J.P., and Owen, D.J. (2013). Structural basis of Vps33A recruitment to the human HOPS complex by Vps16. Proceedings of the National Academy of Sciences 110, 13345–13350.10.1073/pnas.1307074110Search in Google Scholar PubMed PubMed Central

Hama, H., Tall, G., and Horazdovsky, B. (1999). Vps9p is a guanine nucleotide exchange factor involved in vesicle-mediated vacuolar protein transport. J. Biol. Chem. 274, 15284–15291.10.1074/jbc.274.21.15284Search in Google Scholar PubMed

Horazdovsky, B., Cowles, C., Mustol, P., Holmes, M., and Emr, S. (1996). A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization. J. Biol. Chem. 271, 33607–33615.10.1074/jbc.271.52.33607Search in Google Scholar PubMed

Hutagalung, A.H. and Novick, P.J. (2011). Role of Rab GTPases in membrane traffic and cell physiology. Physiol. Rev. 91, 119–149.10.1152/physrev.00059.2009Search in Google Scholar PubMed PubMed Central

Itzen, A. and Goody, R.S. (2011). GTPases involved in vesicular trafficking: structures and mechanisms. Semin. Cell Dev. Biol. 22, 48–56.10.1016/j.semcdb.2010.10.003Search in Google Scholar PubMed

John Peter, A.T., Lachmann, J., Rana, M., Bunge, M., Cabrera, M., and Ungermann, C. (2013). The BLOC-1 complex promotes endosomal maturation by recruiting the Rab5 GTPase-activating protein Msb3. J. Cell Biol. 201, 97–111.10.1083/jcb.201210038Search in Google Scholar PubMed PubMed Central

Kinchen, J.M. and Ravichandran, K.S. (2010). Identification of two evolutionarily conserved genes regulating processing of engulfed apoptotic cells. Nature 464, 778–782.10.1038/nature08853Search in Google Scholar PubMed PubMed Central

Kramer, L. and Ungermann, C. (2011). HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Mol. Biol. Cell 22, 2601–2611.10.1091/mbc.e11-02-0104Search in Google Scholar

Lachmann, J., Barr, F.A., and Ungermann, C. (2012). The Msb3/Gyp3 GAP controls the activity of the Rab GTPases Vps21 and Ypt7 at endosomes and vacuoles. Mol. Biol. Cell 23, 2516–2526.10.1091/mbc.e11-12-1030Search in Google Scholar PubMed PubMed Central

Li, L., Kim, E., Yuan, H., Inoki, K., Goraksha-Hicks, P., Schiesher, R.L., Neufeld, T.P., and Guan, K.L. (2010). Regulation of mTORC1 by the Rab and Arf GTPases. J. Biol. Chem. 285, 19705–19709.10.1074/jbc.C110.102483Search in Google Scholar PubMed PubMed Central

Liu, T.T., Gomez, T.S., Sackey, B.K., Billadeau, D.D., and Burd, C.G. (2012). Rab GTPase regulation of retromer-mediated cargo export during endosome maturation. Mol. Biol. Cell 23, 2505–2515.10.1091/mbc.e11-11-0915Search in Google Scholar

Liu, Y., Nakatsukasa, K., Kotera, M., Kanada, A., Nishimura, T., Kishi, T., Mimura, S., and Kamura, T. (2011). Non-SCF type F-box protein Roy1/Ymr258c interacts with a Rab5-like GTPase Ypt52 and inhibits Ypt52 function. Mol. Biol. Cell. 22, 1575–1584.10.1091/mbc.e10-08-0716Search in Google Scholar PubMed PubMed Central

Lobingier, B.T. and Merz, A.J. (2012). Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex. Mol. Biol. Cell 23, 4611–4622.10.1091/mbc.e12-05-0343Search in Google Scholar PubMed PubMed Central

Lodhi, I.J., Bridges, D., Chiang, S.H., Zhang, Y., Cheng, A., Geletka, L.M., Weisman, L.S., and Saltiel, A.R. (2008). Insulin stimulates phosphatidylinositol 3-phosphate production via the activation of Rab5. Mol. Biol. Cell 19, 2718–2728.10.1091/mbc.e08-01-0105Search in Google Scholar PubMed PubMed Central

Markgraf, D.F., Ahnert, F., Arlt, H., Mari, M., Peplowska, K., Epp, N., Griffith, J., Reggiori, F., and Ungermann, C. (2009). The CORVET subunit Vps8 cooperates with the Rab5 homolog Vps21 to induce clustering of late endosomal compartments. Mol. Biol. Cell 20, 5276–5289.10.1091/mbc.e09-06-0521Search in Google Scholar PubMed PubMed Central

Nickerson, D.P., Brett, C.L., and Merz, A.J. (2009). Vps-C complexes: gatekeepers of endolysosomal traffic. Curr. Opin. Cell Biol. 21, 543–551.10.1016/j.ceb.2009.05.007Search in Google Scholar PubMed PubMed Central

Nickerson, D.P., Russell, M.R.G., Lo, S.Y., Chapin, H.C., Milnes, J.M., and Merz, A.J. (2012). Termination of isoform-selective Vps21/Rab5 signaling at endolysosomal organelles by Msb3/Gyp3. Traffic 13, 1411–1428.10.1111/j.1600-0854.2012.01390.xSearch in Google Scholar PubMed PubMed Central

Nordmann, M., Cabrera, M., Perz, A., Bröcker, C., Ostrowicz, C.W., Engelbrecht-Vandré, S., and Ungermann, C. (2010). The Mon1-Ccz1 complex is the GEF of the late endosomal Rab7 homolog Ypt7. Curr. Biol. 20, 1654–1659.10.1016/j.cub.2010.08.002Search in Google Scholar PubMed

Ostrowicz, C.W., Bröcker, C., Ahnert, F., Nordmann, M., Lachmann, J., Peplowska, K., Perz, A., Auffarth, K., Engelbrecht-Vandré, S., and Ungermann, C. (2010). Defined subunit arrangement and rab interactions are required for functionality of the HOPS tethering complex. Traffic 11, 1334–1346.10.1111/j.1600-0854.2010.01097.xSearch in Google Scholar PubMed

Panchaud, N., Péli-Gulli, M.P., and de Virgilio, C. (2013). SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12, 2948–2952.10.4161/cc.26000Search in Google Scholar PubMed PubMed Central

Paulsel, A.L., Merz, A.J., and Nickerson, D.P. (2013). Vps9 family protein Muk1 is the second Rab5 guanosine nucleotide exchange factor in budding yeast. J. Biol. Chem. 288, 18162–18171.10.1074/jbc.M113.457069Search in Google Scholar PubMed PubMed Central

Pawelec, A., Arsić, J., and Kölling, R. (2010). Mapping of Vps21 and HOPS binding sites in Vps8 and effect of binding site mutants on endocytic trafficking. Eukaryotic Cell 9, 602–610.10.1128/EC.00286-09Search in Google Scholar PubMed PubMed Central

Peplowska, K., Markgraf, D.F., Ostrowicz, C.W., Bange, G., and Ungermann, C. (2007). The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev. Cell 12, 739–750.10.1016/j.devcel.2007.03.006Search in Google Scholar PubMed

Peterson, M.R., Burd, C.G., and Emr, S.D. (1999). Vac1p coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr. Biol. 9, 159–162.10.1016/S0960-9822(99)80071-2Search in Google Scholar

Plemel, R.L., Lobingier, B.T., Brett, C.L., Angers, C.G., Nickerson, D.P., Paulsel, A., Sprague, D., and Merz, A.J. (2011). Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. Mol. Biol. Cell 22, 1353–1363.10.1091/mbc.e10-03-0260Search in Google Scholar PubMed PubMed Central

Poteryaev, D., Datta, S., Ackema, K., Zerial, M., and Spang, A. (2010). Identification of the switch in early-to-late endosome transition. Cell 141, 497–508.10.1016/j.cell.2010.03.011Search in Google Scholar PubMed

Rojas, R., van Vlijmen, T., Mardones, G.A., Prabhu, Y., Rojas, A.L., Mohammed, S., Heck, A.J., Raposo, G., van der Sluijs, P., and Bonifacino, J.S. (2008). Regulation of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J. Cell Biol. 183, 513–526.10.1083/jcb.200804048Search in Google Scholar PubMed PubMed Central

Sancak, Y., Bar-Peled, L., Zoncu, R., Markhard, A.L., Nada, S., and Sabatini, D.M. (2010). Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303.10.1016/j.cell.2010.02.024Search in Google Scholar PubMed PubMed Central

Seals, D., Eitzen, G., Margolis, N., Wickner, W., and Price, A. (2000). A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc. Natl. Acad. Sci. USA 97, 9402–9407.10.1073/pnas.97.17.9402Search in Google Scholar PubMed PubMed Central

Seaman, M.N., Gautreau, A., and Billadeau, D.D. (2013). Retromer-mediated endosomal protein sorting: all WASHed up! Trends Cell Biol., doi:10.1016/j.tcb.2013.04.010.10.1016/j.tcb.2013.04.010Search in Google Scholar PubMed PubMed Central

Seaman, M.N., Harbour, M.E., Tattersall, D., Read, E., and Bright, N. (2009). Membrane recruitment of the cargo-selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J. Cell Sci. 122, 2371–2382.10.1242/jcs.048686Search in Google Scholar PubMed PubMed Central

Shin, H.W., Hayashi, M., Christoforidis, S., Lacas-Gervais, S., Hoepfner, S., Wenk, M.R., Modregger, J., Uttenweiler-Joseph, S., Wilm, M., Nystuen, A., et al. (2005). An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J. Cell Biol. 170, 607–618.10.1083/jcb.200505128Search in Google Scholar PubMed PubMed Central

Singer-Kruger, B., Stenmark, H., Dusterhoft, A., Philippsen, P., Yoo, J., Gallwitz, D., and Zerial, M. (1994). Role of three rab5-like GTPases, Ypt51p, Ypt52p, and Ypt53p, in the endocytic and vacuolar protein sorting pathways of yeast. J. Cell Biol. 125, 283–298.10.1083/jcb.125.2.283Search in Google Scholar PubMed PubMed Central

Stein, M.P., Feng, Y., Cooper, K.L., Welford, A.M., and Wandinger-Ness, A. (2003). Human VPS34 and p150 are Rab7 interacting partners. Traffic 4, 754–771.10.1034/j.1600-0854.2003.00133.xSearch in Google Scholar PubMed

Sturgill, T.W., Cohen, A., Diefenbacher, M., Trautwein, M., Martin, D.E., and Hall, M.N. (2008). TOR1 and TOR2 have distinct locations in live cells. Eukaryotic Cell 7, 1819–1830.10.1128/EC.00088-08Search in Google Scholar PubMed PubMed Central

Tall, G., Hama, H., DeWald, D., and Horazdovsky, B. (1999). The phosphatidylinositol 3-phosphate binding protein Vac1p interacts with a Rab GTPase and a Sec1p homologue to facilitate vesicle-mediated vacuolar protein sorting. Mol. Biol. Cell 10, 1873–1889.10.1091/mbc.10.6.1873Search in Google Scholar PubMed PubMed Central

Valbuena, N., Guan, K.L., and Moreno, S. (2012). The Vam6 and Gtr1-Gtr2 pathway activates TORC1 in response to amino acids in fission yeast. J. Cell Sci. 125, 1920–1928.10.1242/jcs.105395Search in Google Scholar PubMed

Wurmser, A.E., Sato, T.K., and Emr, S.D. (2000). New component of the vacuolar class C-Vps complex couples nucleotide exchange on the Ypt7 GTPase to SNARE-dependent docking and fusion. J. Cell Biol. 151, 551–562.10.1083/jcb.151.3.551Search in Google Scholar PubMed PubMed Central

Yousefian, J., Troost, T., Grawe, F., Sasamura, T., Fortini, M., and Klein, T. (2013). Dmon1 controls recruitment of Rab7 to maturing endosomes in Drosophila. J. Cell Sci. 126, 1583–1594.10.1242/jcs.114934Search in Google Scholar PubMed PubMed Central

Zick, M. and Wickner, W. (2013). The tethering complex HOPS catalyzes assembly of the soluble SNARE Vam7 into fusogenic trans-SNARE complexes. Mol. Biol. Cell, doi:10.1091/mbc.E13-07-0419.10.1091/mbc.e13-07-0419Search in Google Scholar

Zurita-Martinez, S.A., Puria, R., Pan, X., Boeke, J.D., and Cardenas, M.E. (2007). Efficient Tor signaling requires a functional class C Vps protein complex in Saccharomyces cerevisiae. Genetics 176, 2139–2150.10.1534/genetics.107.072835Search in Google Scholar PubMed PubMed Central

Received: 2013-9-18
Accepted: 2013-10-22
Published Online: 2013-10-23
Published in Print: 2014-03-01

©2014 by Walter de Gruyter Berlin Boston

Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hsz-2013-0258/html
Scroll to top button