Startseite Lebenswissenschaften Metabolic and neuroendocrine adaptations to undernutrition in anorexia nervosa: from a clinical to a basic research point of view
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Metabolic and neuroendocrine adaptations to undernutrition in anorexia nervosa: from a clinical to a basic research point of view

  • Odile Viltart , Philibert Duriez und Virginie Tolle EMAIL logo
Veröffentlicht/Copyright: 28. März 2018

Abstract

The exact mechanisms linking metabolic and neuroendocrine adaptations to undernutrition and the pathophysiology of anorexia nervosa (AN) are not fully understood. AN is a psychiatric disorder of complex etiology characterized by extreme starvation while the disease is progressing into a chronic state. Metabolic and endocrine alterations associated to this disorder are part of a powerful response to maintain whole body energy homeostasis. But these modifications may also contribute to associated neuropsychiatric symptoms (reward abnormalities, anxiety, depression) and thus participate to sustain the disease. The current review presents data with both a clinical and basic research point of view on the role of nutritional and energy sensors with neuroendocrine actions in the pathophysiology of the disease, as they modulate metabolic responses, reproductive functions, stress responses as well as physical activity. While clinical data present a full description of changes occurring in AN, animal models that integrate either spontaneous genetic mutations or experimentally-induced food restriction with hyperactivity and/or social stress recapitulate the main metabolic and endocrine alterations of AN and provide mechanistic information between undernutrition state and symptoms of the disease. Further progress on the central and peripheral mechanism involved in the pathophysiology of eating disorders partly relies on the development and/or refinement of existing animal models to include recently identified genetic traits and better mimic the complex and multifactorial dimensions of the disease.

Acknowledgments

The authors are very grateful to Pr Philip Gorwood and Dr Jacques Epelbaum for their scientific contributions that helped shaping this manuscript and for their help in editing the manuscript.

Author Statement

  1. Research funding: This work was supported by Institut National de la Santé et de la Recherche Médicale and University Paris Descartes.

  2. Conflict of interest: Authors state no conflict of interest.

  3. Informed consent: Informed consent is not applicable.

  4. Ethical approval: The conducted research is not related to either human or animals use.

References

[1] Steinhausen HC. The outcome of anorexia nervosa in the 20th century. Am J Psychiatry. 2002;159:1284–93.10.1176/appi.ajp.159.8.1284Suche in Google Scholar

[2] van Furth EF, van der Meer A, Cowan K. Top 10 research priorities for eating disorders. Lancet Psychiatry. 2016;3:706–7.10.1016/S2215-0366(16)30147-XSuche in Google Scholar

[3] Duncan L, Yilmaz Z, Gaspar H, Walters R, Goldstein J, Anttila V, et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am J Psychiatry. 2017;174:850–8.10.1176/appi.ajp.2017.16121402Suche in Google Scholar

[4] Schorr M, Miller KK. The endocrine manifestations of anorexia nervosa: mechanisms and management. Nat Rev Endocrinol. 2017;13:174–86.10.1038/nrendo.2016.175Suche in Google Scholar

[5] Germain N, Galusca B, Grouselle D, Frere D, Billard S, Epelbaum J, et al. Ghrelin and obestatin circadian levels differentiate bingeing-purging from restrictive anorexia nervosa. J Clin Endocrinol Metabol. 2010;95:3057–62.10.1210/jc.2009-2196Suche in Google Scholar

[6] Johansen JE, Fetissov S, Fischer H, Arvidsson S, Hokfelt T, Schalling M. Approaches to anorexia in rodents: focus on the anx/anx mouse. Euro J Pharmacol. 2003;480:171–6.10.1016/j.ejphar.2003.08.104Suche in Google Scholar

[7] Mequinion M, Chauveau C, Viltart O. The use of animal models to decipher physiological and neurobiological alterations of anorexia nervosa patients. Front Endocrinol. 2015;6:68.10.3389/fendo.2015.00068Suche in Google Scholar

[8] Siegfried Z, Berry EM, Hao S, Avraham Y. Animal models in the investigation of anorexia. Physiol Behav. 2003;79:39–45.10.1016/S0031-9384(03)00103-3Suche in Google Scholar

[9] Madra M, Zeltser LM. BDNF-Val66Met variant and adolescent stress interact to promote susceptibility to anorexic behavior in mice. Transl Psychiatry. 2016;6:e776.10.1038/tp.2016.35Suche in Google Scholar PubMed PubMed Central

[10] Nilsson IA, Lindfors C, Schalling M, Hokfelt T, Johansen JE. Anorexia and hypothalamic degeneration. Vitamins and Hormones. 2013;92:27–60.10.1016/B978-0-12-410473-0.00002-7Suche in Google Scholar PubMed

[11] Johansen JE, Teixeira VL, Johansson C, Serrao P, Berggren PO, Soares-Da-Silva P, et al. Altered dopaminergic transmission in the anorexic anx/anx mouse striatum. Neuroreport. 2001;12:2737–41.10.1097/00001756-200108280-00029Suche in Google Scholar PubMed

[12] Lachuer J, Ouyang L, Legras C, Del Rio J, Barlow C. Gene expression profiling reveals an inflammatory process in the anx/anx mutant mice. Brain Res Mol Brain Res. 2005;139:372–6.10.1016/j.molbrainres.2005.06.003Suche in Google Scholar PubMed

[13] Nilsson I, Lindfors C, Fetissov SO, Hokfelt T, Johansen JE. Aberrant agouti-related protein system in the hypothalamus of the anx/anx mouse is associated with activation of microglia. J Comp Neurol. 2008;507:1128–40.10.1002/cne.21599Suche in Google Scholar PubMed

[14] Lindfors C, Nilsson IA, Garcia-Roves PM, Zuberi AR, Karimi M, Donahue LR, et al. Hypothalamic mitochondrial dysfunction associated with anorexia in the anx/anx mouse. Proc Natl Acad Sci USA. 2011;108:18108–13.10.1073/pnas.1114863108Suche in Google Scholar PubMed PubMed Central

[15] Adan RA, Hillebrand JJ, Danner UN, Cardona Cano S, Kas MJ, Verhagen LA. Neurobiology driving hyperactivity in activity-based anorexia. Curr Top Behav Neurosci. 2011;6:229–50.10.1007/7854_2010_77Suche in Google Scholar PubMed

[16] Routtenberg A. “Self-starvation” of rats living in activity wheels: adaptation effects. J Comp Physiol Psychol. 1968;66:234–8.10.1037/h0025977Suche in Google Scholar PubMed

[17] Routtenberg A, Kuznesof AW. Self-starvation of rats living in activity wheels on a restricted feeding schedule. J Comp Physiol Psychol. 1967;64:414–21.10.1037/h0025205Suche in Google Scholar PubMed

[18] Klenotich SJ, Dulawa SC. The activity-based anorexia mouse model. Methods Mol Biol. 2012;829:377–93.10.1007/978-1-61779-458-2_25Suche in Google Scholar PubMed

[19] Foldi CJ, Milton LK, Oldfield BJ. A focus on reward in anorexia nervosa through the lens of the activity-based anorexia rodent model. J Neuroendocrinol. 2017;29.10.1111/jne.12479Suche in Google Scholar PubMed

[20] Foldi CJ, Milton LK, Oldfield BJ. The role of mesolimbic reward neurocircuitry in prevention and rescue of the activity-based anorexia (ABA) phenotype in rats. Neuropsychopharmacology. 2017;42:2292–300.10.1038/npp.2017.63Suche in Google Scholar PubMed PubMed Central

[21] Hillebrand JJ, Koeners MP, de Rijke CE, Kas MJ, Adan RA. Leptin treatment in activity-based anorexia. Biol Psychiatry. 2005;58:165–71.10.1016/j.biopsych.2005.03.011Suche in Google Scholar PubMed

[22] Achamrah N, Nobis S, Breton J, Jesus P, Belmonte L, Maurer B, et al. Maintaining physical activity during refeeding improves body composition, intestinal hyperpermeability and behavior in anorectic mice. Sci Rep. 2016;6:21887.10.1038/srep21887Suche in Google Scholar

[23] Jesus P, Ouelaa W, Francois M, Riachy L, Guerin C, Aziz M, et al. Alteration of intestinal barrier function during activity-based anorexia in mice. Clin Nutr. 2014;33:1046–53.10.1016/j.clnu.2013.11.006Suche in Google Scholar

[24] van Leeuwen SD, Bonne OB, Avraham Y, Berry EM. Separation as a new animal model for self-induced weight loss. Physiol Behav. 1997;62:77–81.10.1016/S0031-9384(97)00144-3Suche in Google Scholar

[25] Mequinion M, Le Thuc O, Zgheib S, Alexandre D, Chartrel N, Rovere C, et al. Long-term energy deficit in mice causes long-lasting hypothalamic alterations after recovery. Neuroendocrinology. 2017;105:372–83.10.1159/000455048Suche in Google Scholar PubMed

[26] Zgheib S, Mequinion M, Lucas S, Leterme D, Ghali O, Tolle V, et al. Long-term physiological alterations and recovery in a mouse model of separation associated with time-restricted feeding: a tool to study anorexia nervosa related consequences. PLoS One. 2014;9:e103775.10.1371/journal.pone.0103775Suche in Google Scholar PubMed PubMed Central

[27] Alamri BN, Shin K, Chappe V, Anini Y. The role of ghrelin in the regulation of glucose homeostasis. Horm Mol Biol Clin Investig. 2016;26:3–11.10.1515/hmbci-2016-0018Suche in Google Scholar PubMed

[28] Cummings DE. Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol Behav. 2006;89:71–84.10.1016/j.physbeh.2006.05.022Suche in Google Scholar PubMed

[29] Tschöp M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature. 2000;407:908–13.10.1038/35038090Suche in Google Scholar PubMed

[30] Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.10.1038/45230Suche in Google Scholar PubMed

[31] Gutierrez JA, Solenberg PJ, Perkins DR, Willency JA, Knierman MD, Jin Z, et al. Ghrelin octanoylation mediated by an orphan lipid transferase. Proc Natl Acad Sci USA. 2008;105:6320–5.10.1073/pnas.0800708105Suche in Google Scholar PubMed PubMed Central

[32] Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132:387–96.10.1016/j.cell.2008.01.017Suche in Google Scholar PubMed

[33] Tolle V, Zizzari P, Tomasetto C, Rio MC, Epelbaum J, Bluet-Pajot MT. In vivo and in vitro effects of ghrelin/motilin-related peptide on growth hormone secretion in the rat. Neuroendocrinology. 2001;73:54–61.10.1159/000054620Suche in Google Scholar PubMed

[34] Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology. 2000;141:4325–8.10.1210/endo.141.11.7873Suche in Google Scholar PubMed

[35] Delhanty PJ, Neggers SJ, van der Lely AJ. Mechanisms in endocrinology: Ghrelin: the differences between acyl- and des-acyl ghrelin. Euro J Endocrinol. 2012;167:601–8.10.1530/EJE-12-0456Suche in Google Scholar PubMed

[36] Zhang JV, Ren P-G, Avsian-Kretchmer O, Luo C-W, Rauch R, Klein C, et al. Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science. 2005;310:996–9.10.1126/science.1117255Suche in Google Scholar PubMed

[37] Hosoda H, Doi K, Nagaya N, Okumura H, Nakagawa E, Enomoto M, et al. Optimum collection and storage conditions for ghrelin measurements: octanoyl modification of ghrelin is rapidly hydrolyzed to desacyl ghrelin in blood samples. Clini Chem. 2004;50:1077–80.10.1373/clinchem.2003.025841Suche in Google Scholar PubMed

[38] Delhanty PJ, Neggers SJ, van der Lely AJ. Des-acyl ghrelin: a metabolically active peptide. Endocr Dev. 2013;25:112–21.10.1159/000346059Suche in Google Scholar PubMed

[39] Asakawa A, Inui A, Fujimiya M, Sakamaki R, Shinfuku N, Ueta Y, et al. Stomach regulates energy balance via acylated ghrelin and desacyl ghrelin. Gut. 2005;54:18–24.10.1136/gut.2004.038737Suche in Google Scholar PubMed PubMed Central

[40] Delhanty PJ, van der Lely AJ. Ghrelin and glucose homeostasis. Peptides. 2011;32:2309–18.10.1016/j.peptides.2011.03.001Suche in Google Scholar PubMed

[41] Delhanty PJ, Huisman M, Baldeon-Rojas LY, van den Berge I, Grefhorst A, Abribat T, et al. Des-acyl ghrelin analogs prevent high-fat-diet-induced dysregulation of glucose homeostasis. FASEB J. 2013;27:1690–700.10.1096/fj.12-221143Suche in Google Scholar PubMed

[42] Monteleone P, Serritella C, Martiadis V, Scognamiglio P, Maj M. Plasma obestatin, ghrelin, and ghrelin/obestatin ratio are increased in underweight patients with anorexia nervosa but not in symptomatic patients with bulimia nervosa. J Clin Endocrinol Metabol. 2008;93:4418–21.10.1210/jc.2008-1138Suche in Google Scholar PubMed

[43] Soriano-Guillén L, Barrios V, Campos-Barros A, Argente J. Ghrelin levels in obesity and anorexia nervosa: effect of weight reduction or recuperation. J Pediatr. 2004;144:36–42.10.1016/j.jpeds.2003.10.036Suche in Google Scholar PubMed

[44] Tolle V, Kadem M, Bluet-Pajot M-T, Frere D, Foulon C, Bossu C, et al. Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women. J Clin Endocrinol Metabol. 2003;88:109–16.10.1210/jc.2002-020645Suche in Google Scholar PubMed

[45] Germain N, Galusca B, Grouselle D, Frere D, Tolle V, Zizzari P, et al. Ghrelin/obestatin ratio in two populations with low bodyweight: constitutional thinness and anorexia nervosa. Psychoneuroendocrinology. 2009;34:413–9.10.1016/j.psyneuen.2008.10.001Suche in Google Scholar PubMed

[46] Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, et al. New Insights in Anorexia Nervosa. Front Neurosci. 2016;10. DOI: 10.3389/fnins.2016.00256.Suche in Google Scholar PubMed PubMed Central

[47] Verbaeys I, Tolle V, Swennen Q, Zizzari P, Buyse J, Epelbaum J, et al. Scheduled feeding results in adipogenesis and increased acylated ghrelin. Am J Physiol Endocrinol Metabol. 2011;300:E1103–11.10.1152/ajpendo.00551.2010Suche in Google Scholar PubMed

[48] Zizzari P, Hassouna R, Grouselle D, Epelbaum J, Tolle V. Physiological roles of preproghrelin-derived peptides in GH secretion and feeding. Peptides. 2011;32:2274–82.10.1016/j.peptides.2011.04.014Suche in Google Scholar PubMed

[49] Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001;50:1714–9.10.2337/diabetes.50.8.1714Suche in Google Scholar PubMed

[50] Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, et al. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194–8.10.1038/35051587Suche in Google Scholar PubMed

[51] Willesen MG, Kristensen P, Rømer J. Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology. 1999;70:306–16.10.1159/000054491Suche in Google Scholar PubMed

[52] Galusca B, Prevost G, Germain N, Dubuc I, Ling Y, Anouar Y, et al. Neuropeptide Y and alpha-MSH circadian levels in two populations with low body weight: anorexia nervosa and constitutional thinness. PLoS One. 2015;10:e0122040.10.1371/journal.pone.0122040Suche in Google Scholar PubMed PubMed Central

[53] Abizaid A, Liu Z-W, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–39.10.1172/JCI29867Suche in Google Scholar PubMed PubMed Central

[54] Egecioglu E, Jerlhag E, Salome N, Skibicka KP, Haage D, Bohlooly YM, et al. Ghrelin increases intake of rewarding food in rodents. Addict Biol. 2010;15:304–11.10.1111/j.1369-1600.2010.00216.xSuche in Google Scholar PubMed PubMed Central

[55] Edwards A, Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci Biobehav Rev. 2016;66:33–53.10.1016/j.neubiorev.2016.03.032Suche in Google Scholar PubMed

[56] Broglio F, Gianotti L, Destefanis S, Fassino S, Abbate Daga G, Mondelli V, et al. The endocrine response to acute ghrelin administration is blunted in patients with anorexia nervosa, a ghrelin hypersecretory state. Clin Endocrinol (Oxf). 2004;60:592–9.10.1111/j.1365-2265.2004.02011.xSuche in Google Scholar PubMed

[57] Hotta M, Ohwada R, Akamizu T, Shibasaki T, Takano K, Kangawa K. Ghrelin increases hunger and food intake in patients with restricting-type anorexia nervosa: a pilot study. Endocr J. 2009;56:1119–28.10.1507/endocrj.K09E-168Suche in Google Scholar PubMed

[58] Motorykina ES, Khirazova EE, Maslova MV, Maklakova AS, Graf AV, Bayzhymanov AA, et al. Changes in feeding and drinking motivations and glucose content in male rats after single or chronic administration of obestatin or its fragment (1–4). Dokl Biol Sci. 2015;460:1–4.10.1134/S0012496615010019Suche in Google Scholar PubMed

[59] Hassouna R, Labarthe A, Tolle V. Hypothalamic regulation of body growth and appetite by ghrelin-derived peptides during balanced nutrition or undernutrition. Mol Cell Endocrinol. 2016;438:42–51.10.1016/j.mce.2016.09.027Suche in Google Scholar PubMed

[60] Hassouna R, Zizzari P, Viltart O, Yang SK, Gardette R, Videau C, et al. A natural variant of obestatin, Q90L, inhibits ghrelin’s action on food intake and GH secretion and targets NPY and GHRH neurons in mice. PLoS One. 2012;7:e51135.10.1371/journal.pone.0051135Suche in Google Scholar PubMed PubMed Central

[61] Harada T, Nakahara T, Yasuhara D, Kojima S, Sagiyama K, Amitani H, et al. Obestatin, acyl ghrelin, and des-acyl ghrelin responses to an oral glucose tolerance test in the restricting type of anorexia nervosa. Biol Psychiatry. 2008;63:245–7.10.1016/j.biopsych.2007.04.005Suche in Google Scholar PubMed

[62] Koyama KI, Yasuhara D, Nakahara T, Harada T, Uehara M, Ushikai M, et al. Changes in acyl ghrelin, des-acyl ghrelin, and ratio of acyl ghrelin to total ghrelin with short-term refeeding in female inpatients with restricting-type anorexia nervosa. Horm Metab Res. 2010;42:595–8.10.1055/s-0030-1252017Suche in Google Scholar

[63] Fernandez G, Cabral A, Cornejo MP, De Francesco PN, Garcia-Romero G, Reynaldo M, et al. Des-acyl ghrelin directly targets the arcuate nucleus in a ghrelin-receptor independent manner and impairs the orexigenic effect of ghrelin. J Neuroendocrinol. 2016;28:12349.10.1111/jne.12349Suche in Google Scholar

[64] Shimizu K, Ogura H, Wasa M, Hirose T, Shimazu T, Nagasaka H, et al. Refractory hypoglycemia and subsequent cardiogenic shock in starvation and refeeding: report of three cases. Nutrition. 2014;30:1090–2.10.1016/j.nut.2014.01.007Suche in Google Scholar

[65] Sakurai-Chin C, Ito N, Taguchi M, Miyakawa M, Takeshita A, Takeuchi Y. Hypoglycemic coma in a patient with anorexia nervosa coincident with acute exacerbation of liver injury induced by oral intake of nutrients. Intern Med. 2010;49:1553–6.10.2169/internalmedicine.49.3373Suche in Google Scholar

[66] Yanai H, Yoshida H, Tomono Y, Tada N. Severe hypoglycemia in a patient with anorexia nervosa. Eat Weight Disord. 2008;13:e1–3.10.1007/BF03327785Suche in Google Scholar

[67] Fukushima M, Nakai Y, Taniguchi A, Imura H, Nagata I, Tokuyama K. Insulin sensitivity, insulin secretion, and glucose effectiveness in anorexia nervosa: a minimal model analysis. Metabolism. 1993;42:1164–8.10.1016/0026-0495(93)90275-SSuche in Google Scholar

[68] Karczewska-Kupczewska M, Straczkowski M, Adamska A, Nikolajuk A, Otziomek E, Gorska M, et al. Insulin sensitivity, metabolic flexibility, and serum adiponectin concentration in women with anorexia nervosa. Metabolism. 2010;59:473–7.10.1016/j.metabol.2009.07.036Suche in Google Scholar PubMed

[69] Castillo M, Scheen A, Lefebvre PJ, Luyckx AS. Insulin-stimulated glucose disposal is not increased in anorexia nervosa. J Clin Endocrinol Metabol. 1985;60:311–4.10.1210/jcem-60-2-311Suche in Google Scholar PubMed

[70] Karczewska-Kupczewska M, Straczkowski M, Adamska A, Nikolajuk A, Otziomek E, Gorska M, et al. Increased suppression of serum ghrelin concentration by hyperinsulinemia in women with anorexia nervosa. Euro J Endocrinol. 2010;162:235–9.10.1530/EJE-09-0832Suche in Google Scholar PubMed

[71] Asakawa A, Inui A, Kaga T, Katsuura G, Fujimiya M, Fujino MA, et al. Antagonism of ghrelin receptor reduces food intake and body weight gain in mice. Gut. 2003;52:947–52.10.1136/gut.52.7.947Suche in Google Scholar PubMed PubMed Central

[72] Sun Y, Asnicar M, Saha PK, Chan L, Smith RG. Ablation of ghrelin improves the diabetic but not obese phenotype of ob/ob mice. Cell Metabol. 2006;3:379–86.10.1016/j.cmet.2006.04.004Suche in Google Scholar PubMed

[73] Yi CX, Heppner KM, Kirchner H, Tong J, Bielohuby M, Gaylinn BD, et al. The GOAT-ghrelin system is not essential for hypoglycemia prevention during prolonged calorie restriction. PLoS One. 2012;7:e32100.10.1371/journal.pone.0032100Suche in Google Scholar PubMed PubMed Central

[74] Zhao T-J, Liang G, Li RL, Xie X, Sleeman MW, Murphy AJ, et al. Ghrelin O-acyltransferase (GOAT) is essential for growth hormone-mediated survival of calorie-restricted mice. Proc Natl Acad Sci USA. 2010;107:7467–72.10.1073/pnas.1002271107Suche in Google Scholar PubMed PubMed Central

[75] Li RL, Sherbet DP, Elsbernd BL, Goldstein JL, Brown MS, Zhao TJ. Profound hypoglycemia in starved, ghrelin-deficient mice is caused by decreased gluconeogenesis and reversed by lactate or fatty acids. J Biol Chem. 2012;287:17942–50.10.1074/jbc.M112.358051Suche in Google Scholar PubMed PubMed Central

[76] Stanley S, Domingos AI, Kelly L, Garfield A, Damanpour S, Heisler L, et al. Profiling of glucose-sensing neurons reveals that GHRH neurons are activated by hypoglycemia. Cell metabolism. 2013;18:596–607.10.1016/j.cmet.2013.09.002Suche in Google Scholar PubMed

[77] Miljic D, Djurovic M, Pekic S, Doknic M, Stojanovic M, Milic N, et al. Glucose metabolism during ghrelin infusion in patients with anorexia nervosa. J Endocrinol Invest. 2007;30:771–5.10.1007/BF03350816Suche in Google Scholar PubMed

[78] Nass R, Farhy LS, Liu J, Prudom CE, Johnson ML, Veldhuis P, et al. Evidence for acyl-ghrelin modulation of growth hormone release in the fed state. J Clin Endocrinol Metabol. 2008;93:1988–94.10.1210/jc.2007-2234Suche in Google Scholar PubMed PubMed Central

[79] Grinspoon S, Thomas E, Pitts S, Gross E, Mickley D, Miller K, et al. Prevalence and predictive factors for regional osteopenia in women with anorexia nervosa. Ann Intern Med. 2000;133:790–4.10.7326/0003-4819-133-10-200011210-00011Suche in Google Scholar PubMed PubMed Central

[80] Miller KK, Lee EE, Lawson EA, Misra M, Minihan J, Grinspoon SK, et al. Determinants of skeletal loss and recovery in anorexia nervosa. J Clin Endocrinol Metabol. 2006;91:2931–7.10.1210/jc.2005-2818Suche in Google Scholar PubMed PubMed Central

[81] Misra M, Aggarwal A, Miller KK, Almazan C, Worley M, Soyka LA, et al. Effects of anorexia nervosa on clinical, hematologic, biochemical, and bone density parameters in community-dwelling adolescent girls. Pediatrics. 2004;114:1574–83.10.1542/peds.2004-0540Suche in Google Scholar PubMed

[82] Soyka LA, Misra M, Frenchman A, Miller KK, Grinspoon S, Schoenfeld DA, et al. Abnormal bone mineral accrual in adolescent girls with anorexia nervosa. J Clin Endocrinol Metabol. 2002;87:4177–85.10.1210/jc.2001-011889Suche in Google Scholar

[83] Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metabol. 2013;98:1923–9.10.1210/jc.2012-4153Suche in Google Scholar

[84] Lawson EA, Miller KK, Bredella MA, Phan C, Misra M, Meenaghan E, et al. Hormone predictors of abnormal bone microarchitecture in women with anorexia nervosa. Bone. 2010;46:458–63.10.1016/j.bone.2009.09.005Suche in Google Scholar

[85] Misra M, Prabhakaran R, Miller KK, Goldstein MA, Mickley D, Clauss L, et al. Weight gain and restoration of menses as predictors of bone mineral density change in adolescent girls with anorexia nervosa-1. J Clin Endocrinol Metabol. 2008;93:1231–7.10.1210/jc.2007-1434Suche in Google Scholar

[86] Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metabol. 2002;87:2883–91.10.1210/jcem.87.6.8574Suche in Google Scholar

[87] Misra M, Miller KK, Bjornson J, Hackman A, Aggarwal A, Chung J, et al. Alterations in growth hormone secretory dynamics in adolescent girls with anorexia nervosa and effects on bone metabolism. J Clin Endocrinol Metabol. 2003;88:5615–23.10.1210/jc.2003-030532Suche in Google Scholar

[88] Stoving RK, Veldhuis JD, Flyvbjerg A, Vinten J, Hangaard J, Koldkjaer OG, et al. Jointly amplified basal and pulsatile growth hormone (GH) secretion and increased process irregularity in women with anorexia nervosa: indirect evidence for disruption of feedback regulation within the GH-insulin-like growth factor I axis. J Clin Endocrinol Metabol. 1999;84:2056–63.10.1210/jc.84.6.2056Suche in Google Scholar

[89] Counts DR, Gwirtsman H, Carlsson LM, Lesem M, Cutler GB, Jr. The effect of anorexia nervosa and refeeding on growth hormone-binding protein, the insulin-like growth factors (IGFs), and the IGF-binding proteins. J Clin Endocrinol Metabol. 1992;75:762–7.10.1210/jcem.75.3.1381372Suche in Google Scholar

[90] Misra M, Klibanski A. Endocrine consequences of anorexia nervosa. Lancet Diabetes Endocrinol. 2014;2:581–92.10.1016/S2213-8587(13)70180-3Suche in Google Scholar

[91] van der Velde M, Delhanty P, van der Eerden B, van der Lely AJ, van Leeuwen J. Ghrelin and bone. Vitamins and Hormones. 2008;77:239–58.10.1016/S0083-6729(06)77010-8Suche in Google Scholar

[92] Choi HJ, Ki KH, Yang JY, Jang BY, Song JA, Baek WY, et al. Chronic central administration of Ghrelin increases bone mass through a mechanism independent of appetite regulation. PLoS One. 2013;8:e65505.10.1371/journal.pone.0065505Suche in Google Scholar PubMed PubMed Central

[93] Delhanty PJ, Neggers SJ, van der Lely AJ. Should we consider des-acyl ghrelin as a separate hormone and if so, what does it do? Front Horm Res. 2014;42:163–74.10.1159/000358345Suche in Google Scholar PubMed

[94] Evans MC, Anderson GM. Neuroendocrine integration of nutritional signals on reproduction. J Mol Endocrinol. 2017;58:R107–28.10.1530/JME-16-0212Suche in Google Scholar PubMed

[95] Tena-Sempere M. Ghrelin, the gonadal axis and the onset of puberty. Endocr Dev. 2013;25:69–82.10.1159/000346055Suche in Google Scholar PubMed

[96] Krassas GE. Endocrine abnormalities in Anorexia Nervosa. Pediatric Endocrinol Rev. 2003;1:46–54.Suche in Google Scholar

[97] Boersma GJ, Liang NC, Lee RS, Albertz JD, Kastelein A, Moody LA, et al. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience. Psychoneuroendocrinology. 2016;67:171–81.10.1016/j.psyneuen.2016.02.002Suche in Google Scholar PubMed PubMed Central

[98] Verhagen LA, Luijendijk MC, Adan RA. Leptin reduces hyperactivity in an animal model for anorexia nervosa via the ventral tegmental area. Euro Neuropsychopharmacol. 2011;21:274–81.10.1016/j.euroneuro.2010.11.006Suche in Google Scholar PubMed

[99] Legrand R, Lucas N, Breton J, Azhar S, do Rego JC, Dechelotte P, et al. Ghrelin treatment prevents development of activity based anorexia in mice. Euro Neuropsychopharmacol. 2016;26:948–58.10.1016/j.euroneuro.2016.03.010Suche in Google Scholar PubMed

[100] Lindfors C, Katz A, Selander L, Johansen JE, Marconi G, Schalling M, et al. Glucose intolerance and pancreatic beta-cell dysfunction in the anorectic anx/anx mouse. Am J Physiol Endocrinol Metabol. 2015;309:E418–27.10.1152/ajpendo.00081.2015Suche in Google Scholar PubMed

[101] Bergstrom U, Lindfors C, Svedberg M, Johansen JE, Haggkvist J, Schalling M, et al. Reduced metabolism in the hypothalamus of the anorectic anx/anx mouse. J Endocrinol. 2017;233:15–24.10.1530/JOE-16-0383Suche in Google Scholar PubMed

[102] Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 1995;269:543–6.10.1126/science.7624777Suche in Google Scholar PubMed

[103] Blache D, Tellam RL, Chagas LM, Blackberry MA, Vercoe PE, Martin GB. Level of nutrition affects leptin concentrations in plasma and cerebrospinal fluid in sheep. J Endocrinol. 2000;165:625–37.10.1677/joe.0.1650625Suche in Google Scholar PubMed

[104] Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metabol. 2013;18:29–42.10.1016/j.cmet.2013.05.010Suche in Google Scholar PubMed

[105] Grinspoon S, Gulick T, Askari H, Landt M, Lee K, Anderson E, et al. Serum leptin levels in women with anorexia nervosa. J Clin Endocrinol Metabol. 1996;81:3861–3.10.1210/jcem.81.11.8923829Suche in Google Scholar

[106] Boden G, Chen X, Mozzoli M, Ryan I. Effect of fasting on serum leptin in normal human subjects. J Clin Endocrinol Metabol. 1996;81:3419–23.10.1210/jcem.81.9.8784108Suche in Google Scholar

[107] Balland E, Dam J, Langlet F, Caron E, Steculorum S, Messina A, et al. Hypothalamic tanycytes are an ERK-gated conduit for leptin into the brain. Cell Metabol. 2014;19:293–301.10.1016/j.cmet.2013.12.015Suche in Google Scholar

[108] Friedman JM. Leptin, leptin receptors and the control of body weight. Euro J Med Res. 1997;2:7–13.10.1111/j.1753-4887.1998.tb01685.xSuche in Google Scholar

[109] Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature. 1996;380:677.10.1038/380677a0Suche in Google Scholar

[110] Chudecka M, Lubkowska A. Thermal imaging of body surface temperature distribution in women with anorexia nervosa. Euro Eating Disord Rev. 2016;24:57–61.10.1002/erv.2388Suche in Google Scholar

[111] Hebebrand J, Exner C, Hebebrand K, Holtkamp C, Casper RC, Remschmidt H, et al. Hyperactivity in patients with anorexia nervosa and in semistarved rats: evidence for a pivotal role of hypoleptinemia. Physiol Behav. 2003;79:25–37.10.1016/S0031-9384(03)00102-1Suche in Google Scholar

[112] Carrera O, Adan RA, Gutierrez E, Danner UN, Hoek HW, van Elburg AA, et al. Hyperactivity in anorexia nervosa: warming up not just burning-off calories. PLoS One. 2012;7:e41851.10.1371/journal.pone.0041851Suche in Google Scholar PubMed PubMed Central

[113] Stengel A, Haas V, Elbelt U, Correll CU, Rose M, Hofmann T. Leptin and physical activity in adult patients with anorexia nervosa: failure to demonstrate a simple linear association. Nutrients. 2017;9:E1210.10.3390/nu9111210Suche in Google Scholar PubMed PubMed Central

[114] True C, Kirigiti MA, Kievit P, Grove KL, Smith MS. Leptin is not the critical signal for kisspeptin or luteinising hormone restoration during exit from negative energy balance. J Neuroendocrinol. 2011;23:1099–112.10.1111/j.1365-2826.2011.02144.xSuche in Google Scholar PubMed PubMed Central

[115] Tena-Sempere M. KiSS-1 and reproduction: focus on its role in the metabolic regulation of fertility. Neuroendocrinology. 2006;83:275–81.10.1159/000095549Suche in Google Scholar PubMed

[116] Marraudino M, Miceli D, Farinetti A, Ponti G, Panzica G, Gotti S. Kisspeptin innervation of the hypothalamic paraventricular nucleus: sexual dimorphism and effect of estrous cycle in female mice. J Anat. 2017;230:775–86.10.1111/joa.12603Suche in Google Scholar PubMed PubMed Central

[117] Tsatsanis C, Dermitzaki E, Avgoustinaki P, Malliaraki N, Mytaras V, Margioris AN. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones. 2015;14:549–62.10.14310/horm.2002.1649Suche in Google Scholar PubMed

[118] Navarro VM, Gottsch ML, Chavkin C, Okamura H, Clifton DK, Steiner RA. Regulation of gonadotropin-releasing hormone secretion by kisspeptin/dynorphin/neurokinin B neurons in the arcuate nucleus of the mouse. J Neurosci. 2009;29:11859–66.10.1523/JNEUROSCI.1569-09.2009Suche in Google Scholar PubMed PubMed Central

[119] Avendano MS, Vazquez MJ, Tena-Sempere M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum Reprod Update. 2017;23:737–63.10.1093/humupd/dmx025Suche in Google Scholar PubMed

[120] Estour B, Germain N, Diconne E, Frere D, Cottet-Emard JM, Carrot G, et al. Hormonal profile heterogeneity and short-term physical risk in restrictive anorexia nervosa. J Clin Endocrinol Metabol. 2010;95:2203–10.10.1210/jc.2009-2608Suche in Google Scholar PubMed

[121] Galusca B, Leca V, Germain N, Frere D, Khalfallah Y, Lang F, et al. Normal inhibin B levels suggest partial preservation of gonadal function in adult male patients with anorexia nervosa. J Sex Med. 2012;9:1442–7.10.1111/j.1743-6109.2011.02514.xSuche in Google Scholar PubMed

[122] Haas V, Onur S, Paul T, Nutzinger DO, Bosy-Westphal A, Hauer M, et al. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am J Clin Nutr. 2005;81:889–96.10.1093/ajcn/81.4.889Suche in Google Scholar PubMed

[123] Germain N, Galusca B, Le Roux CW, Bossu C, Ghatei MA, Lang F, et al. Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon-like peptide 1, ghrelin, and leptin. Am J Clin Nutr. 2007;85:967–71.10.1093/ajcn/85.4.967Suche in Google Scholar PubMed

[124] Bacopoulou F, Lambrou GI, Rodanaki ME, Stergioti E, Efthymiou V, Deligeoroglou E, et al. Serum kisspeptin concentrations are negatively correlated with body mass index in adolescents with anorexia nervosa and amenorrhea. Hormones. 2017;16:33–41.10.14310/horm.2002.1717Suche in Google Scholar

[125] Hofmann T, Elbelt U, Haas V, Ahnis A, Klapp BF, Rose M, et al. Plasma kisspeptin and ghrelin levels are independently correlated with physical activity in patients with anorexia nervosa. Appetite. 2017;108:141–50.10.1016/j.appet.2016.09.032Suche in Google Scholar PubMed

[126] Brown RE, Imran SA, Ur E, Wilkinson M. KiSS-1 mRNA in adipose tissue is regulated by sex hormones and food intake. Molecular and cellular endocrinology. 2008;281:64–72.10.1016/j.mce.2007.10.011Suche in Google Scholar PubMed

[127] Dei M, Seravalli V, Bruni V, Balzi D, Pasqua A. Predictors of recovery of ovarian function after weight gain in subjects with amenorrhea related to restrictive eating disorders. Gynecol Endocrinol. 2008;24:459–64.10.1080/09513590802246141Suche in Google Scholar

[128] Viricel J, Bossu C, Galusca B, Kadem M, Germain N, Nicolau A, et al. [Retrospective study of anorexia nervosa: reduced mortality and stable recovery rates]. Presse Medicale. 2005;34(Pt 1):1505–10.10.1016/S0755-4982(05)84213-7Suche in Google Scholar

[129] Wabitsch M, Ballauff A, Holl R, Blum WF, Heinze E, Remschmidt H, et al. Serum leptin, gonadotropin, and testosterone concentrations in male patients with anorexia nervosa during weight gain. J Clin Endocrinol Metabol. 2001;86:2982–8.10.1210/jcem.86.7.7685Suche in Google Scholar

[130] Legroux-Gerot I, Vignau J, Collier F, Cortet B. Bone loss associated with anorexia nervosa. Joint, bone, spine. 2005;72:489–95.10.1016/j.jbspin.2004.07.011Suche in Google Scholar

[131] Misra M, Katzman DK, Cord J, Manning SJ, Mendes N, Herzog DB, et al. Bone metabolism in adolescent boys with anorexia nervosa. J Clin Endocrinol Metabol. 2008;93:3029–36.10.1210/jc.2008-0170Suche in Google Scholar

[132] Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111:305–17.10.1016/S0092-8674(02)01049-8Suche in Google Scholar

[133] Turner RT, Philbrick KA, Kuah AF, Branscum AJ, Iwaniec UT. Role of estrogen receptor signaling in skeletal response to leptin in female ob/ob mice. J Endocrinol. 2017;233:357–67.10.1530/JOE-17-0103Suche in Google Scholar

[134] Johansen JE, Broberger C, Lavebratt C, Johansson C, Kuhar MJ, Hokfelt T, et al. Hypothalamic CART and serum leptin levels are reduced in the anorectic (anx/anx) mouse. Brain Res Mol Brain Res. 2000;84:97–105.10.1016/S0169-328X(00)00228-XSuche in Google Scholar

[135] Figlewicz DP, Evans SB, Murphy J, Hoen M, Baskin DG. Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Res. 2003;964:107–15.10.1016/S0006-8993(02)04087-8Suche in Google Scholar

[136] Dixon DP, Ackert AM, Eckel LA. Development of, and recovery from, activity-based anorexia in female rats. Physiol Behav. 2003;80:273–9.10.1016/j.physbeh.2003.08.008Suche in Google Scholar PubMed

[137] Watanabe K, Hara C, Ogawa N. Feeding conditions and estrous cycle of female rats under the activity-stress procedure from aspects of anorexia nervosa. Physiol Behav. 1992;51:827–32.10.1016/0031-9384(92)90122-ISuche in Google Scholar

[138] Pirke KM, Broocks A, Wilckens T, Marquard R, Schweiger U. Starvation-induced hyperactivity in the rat: the role of endocrine and neurotransmitter changes. Neurosci Biobehav Rev. 1993;17:287–94.10.1016/S0149-7634(05)80012-0Suche in Google Scholar

[139] Young JK. Anorexia nervosa and estrogen: current status of the hypothesis. Neurosci Biobehav Rev. 2010;34:1195–200.10.1016/j.neubiorev.2010.01.015Suche in Google Scholar PubMed

[140] Rivera HM, Santollo J, Nikonova LV, Eckel LA. Estradiol increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized rats. Physiol Behav. 2012;105:188–94.10.1016/j.physbeh.2011.08.018Suche in Google Scholar PubMed PubMed Central

[141] Guarda AS, Schreyer CC, Boersma GJ, Tamashiro KL, Moran TH. Anorexia nervosa as a motivated behavior: Relevance of anxiety, stress, fear and learning. Physiol Behav. 2015;152(Pt B):466–72.10.1016/j.physbeh.2015.04.007Suche in Google Scholar PubMed

[142] Keys A. The residues of malnutrition and starvation. Science. 1950;112:371–3.10.1126/science.112.2909.371Suche in Google Scholar

[143] Mattar L, Thiebaud MR, Huas C, Cebula C, Godart N. Depression, anxiety and obsessive-compulsive symptoms in relation to nutritional status and outcome in severe anorexia nervosa. Psychiatry Res. 2012;200:513–7.10.1016/j.psychres.2012.04.032Suche in Google Scholar PubMed

[144] Lo Sauro C, Ravaldi C, Cabras PL, Faravelli C, Ricca V. Stress, hypothalamic-pituitary-adrenal axis and eating disorders. Neuropsychobiology. 2008;57:95–115.10.1159/000138912Suche in Google Scholar PubMed

[145] Bou Khalil R, Souaiby L, Fares N. The importance of the hypothalamo-pituitary-adrenal axis as a therapeutic target in anorexia nervosa. Physiol Behav. 2017;171:13–20.10.1016/j.physbeh.2016.12.035Suche in Google Scholar PubMed

[146] Hotta M, Shibasaki T, Masuda A, Imaki T, Demura H, Ling N, et al. The responses of plasma adrenocorticotropin and cortisol to corticotropin-releasing hormone (CRH) and cerebrospinal fluid immunoreactive CRH in anorexia nervosa patients. J Clin Endocrinol Metabol. 1986;62:319–24.10.1210/jcem-62-2-319Suche in Google Scholar PubMed

[147] Kaye WH, Gwirtsman HE, George DT, Ebert MH, Jimerson DC, Tomai TP, et al. Elevated cerebrospinal fluid levels of immunoreactive corticotropin-releasing hormone in anorexia nervosa: relation to state of nutrition, adrenal function, and intensity of depression. J Clin Endocrinol Metabol. 1987;64:203–8.10.1210/jcem-64-2-203Suche in Google Scholar PubMed

[148] Connan F, Lightman SL, Landau S, Wheeler M, Treasure J, Campbell IC. An investigation of hypothalamic-pituitary-adrenal axis hyperactivity in anorexia nervosa: the role of CRH and AVP. J Psychiatr Res. 2007;41:131–43.10.1016/j.jpsychires.2005.12.005Suche in Google Scholar

[149] De Kloet ER, Reul JM. Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology. 1987;12:83–105.10.1016/0306-4530(87)90040-0Suche in Google Scholar

[150] Reul JM, de Kloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–11.10.1210/endo-117-6-2505Suche in Google Scholar

[151] Corstorphine E, Mountford V, Tomlinson S, Waller G, Meyer C. Distress tolerance in the eating disorders. Eating Behav. 2007;8:91–7.10.1016/j.eatbeh.2006.02.003Suche in Google Scholar

[152] Akana SF, Strack AM, Hanson ES, Dallman MF. Regulation of activity in the hypothalamo-pituitary-adrenal axis is integral to a larger hypothalamic system that determines caloric flow. Endocrinology. 1994;135:1125–34.10.1210/endo.135.3.8070356Suche in Google Scholar

[153] Dallman MF, Strack AM, Akana SF, Bradbury MJ, Hanson ES, Scribner KA, et al. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol. 1993;14:303–47.10.1006/frne.1993.1010Suche in Google Scholar

[154] Mistlberger RE. Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev. 1994;18:171–95.10.1016/0149-7634(94)90023-XSuche in Google Scholar

[155] Guisinger S. Adapted to flee famine: adding an evolutionary perspective on anorexia nervosa. Psychol Rev. 2003;110:745–61.10.1037/0033-295X.110.4.745Suche in Google Scholar

[156] Challet E, le Maho Y, Robin JP, Malan A, Cherel Y. Involvement of corticosterone in the fasting-induced rise in protein utilization and locomotor activity. Pharmacol Biochem Behav. 1995;50:405–12.10.1016/0091-3057(94)00287-SSuche in Google Scholar

[157] Bassareo V, Di Chiara G. Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Euro J Neurosci. 1999;11:4389–97.10.1046/j.1460-9568.1999.00843.xSuche in Google Scholar PubMed

[158] Piazza PV, Rouge-Pont F, Deroche V, Maccari S, Simon H, Le Moal M. Glucocorticoids have state-dependent stimulant effects on the mesencephalic dopaminergic transmission. Proc Nat Acad Sci USA. 1996;93:8716–20.10.1073/pnas.93.16.8716Suche in Google Scholar

[159] Piazza PV, Le Moal M. Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Res Brain Res Rev. 1997;25:359–72.10.1016/S0165-0173(97)00025-8Suche in Google Scholar

[160] Hensleigh E, Pritchard LM. Glucocorticoid receptor expression and sub-cellular localization in dopamine neurons of the rat midbrain. Neurosci Lett. 2013;556:191–5.10.1016/j.neulet.2013.09.067Suche in Google Scholar

[161] Marinelli M, Piazza PV. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Euro J Neurosci. 2002;16:387–94.10.1046/j.1460-9568.2002.02089.xSuche in Google Scholar

[162] Bergh C, Sodersten P. Anorexia nervosa, self-starvation and the reward of stress. Nat Med. 1996;2:21–2.10.1038/nm0196-21Suche in Google Scholar

[163] Kawaguchi M, Scott KA, Moran TH, Bi S. Dorsomedial hypothalamic corticotropin-releasing factor mediation of exercise-induced anorexia. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1800–5.10.1152/ajpregu.00805.2004Suche in Google Scholar

[164] de Rijke CE, Hillebrand JJ, Verhagen LA, Roeling TA, Adan RA. Hypothalamic neuropeptide expression following chronic food restriction in sedentary and wheel-running rats. J Mol Endocrinol. 2005;35:381–90.10.1677/jme.1.01808Suche in Google Scholar

[165] Krahn DD, Gosnell BA, Levine AS, Morley JE. Behavioral effects of corticotropin-releasing factor: localization and characterization of central effects. Brain Res. 1988;443:63–9.10.1016/0006-8993(88)91598-3Suche in Google Scholar

[166] Koob GF, Heinrichs SC, Pich EM, Menzaghi F, Baldwin H, Miczek K, et al. The role of corticotropin-releasing factor in behavioural responses to stress. Ciba Foundation Symposium. 1993;172:277–89; discussion 90–5.10.1002/9780470514368.ch14Suche in Google Scholar PubMed

[167] Duclos M, Gatti C, Bessiere B, Mormede P. Tonic and phasic effects of corticosterone on food restriction-induced hyperactivity in rats. Psychoneuroendocrinology. 2009;34:436–45.10.1016/j.psyneuen.2008.10.008Suche in Google Scholar PubMed

[168] Scheurink AJ, Boersma GJ, Nergardh R, Sodersten P. Neurobiology of hyperactivity and reward: agreeable restlessness in anorexia nervosa. Physiol Behav. 2010;100:490–5.10.1016/j.physbeh.2010.03.016Suche in Google Scholar

[169] Garcia-Belenguer S, Oliver C, Mormede P. Facilitation and feedback in the hypothalamo-pituitary-adrenal axis during food restriction in rats. J Neuroendocrinol. 1993;5:663–8.10.1111/j.1365-2826.1993.tb00537.xSuche in Google Scholar

[170] Holmes MC, Kotelevtsev Y, Mullins JJ, Seckl JR. Phenotypic analysis of mice bearing targeted deletions of 11beta-hydroxysteroid dehydrogenases 1 and 2 genes. Mol Cell Endocrinol. 2001;171:15–20.10.1016/S0303-7207(00)00386-5Suche in Google Scholar

[171] Duclos M, Ouerdani A, Mormede P, Konsman JP. Food restriction-induced hyperactivity: addiction or adaptation to famine? Psychoneuroendocrinology. 2013;38:884–97.10.1016/j.psyneuen.2012.09.012Suche in Google Scholar PubMed

[172] Avena NM, Bocarsly ME, Rada P, Kim A, Hoebel BG. After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol Behav. 2008;94:309–15.10.1016/j.physbeh.2008.01.008Suche in Google Scholar PubMed PubMed Central

[173] Lenoir M, Serre F, Cantin L, Ahmed SH. Intense sweetness surpasses cocaine reward. PLoS One. 2007;2:e698.10.1371/journal.pone.0000698Suche in Google Scholar PubMed PubMed Central

[174] Cover KK, Maeng LY, Lebron-Milad K, Milad MR. Mechanisms of estradiol in fear circuitry: implications for sex differences in psychopathology. Transl Psychiatr. 2014;4:e422.10.1038/tp.2014.67Suche in Google Scholar PubMed PubMed Central

[175] Wable GS, Min JY, Chen YW, Aoki C. Anxiety is correlated with running in adolescent female mice undergoing activity-based anorexia. Behav Neurosci. 2015;129:170–82.10.1037/bne0000040Suche in Google Scholar PubMed PubMed Central

[176] Greenwood BN, Loughridge AB, Sadaoui N, Christianson JP, Fleshner M. The protective effects of voluntary exercise against the behavioral consequences of uncontrollable stress persist despite an increase in anxiety following forced cessation of exercise. Behav Brain Res. 2012;233:314–21.10.1016/j.bbr.2012.05.017Suche in Google Scholar PubMed PubMed Central

[177] Lawson EA, Donoho D, Miller KK, Misra M, Meenaghan E, Lydecker J, et al. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa. J Clin Endocrinol Metabol. 2009;94:4710–6.10.1210/jc.2009-1046Suche in Google Scholar PubMed PubMed Central

[178] Valente S, Di Girolamo G, Forlani M, Biondini A, Scudellari P, De Ronchi D, et al. Sex-specific issues in eating disorders: a clinical and psychopathological investigation. Eat Weight Disord. 2017;22:707–15.10.1007/s40519-017-0432-7Suche in Google Scholar

[179] Achamrah N, Nobis S, Goichon A, Breton J, Legrand R, do Rego JL, et al. Sex differences in response to activity-based anorexia model in C57Bl/6 mice. Physiol Behav. 2017;170:1–5.10.1016/j.physbeh.2016.12.014Suche in Google Scholar

[180] Achamrah N, Coeffier M, Dechelotte P. Physical activity in patients with anorexia nervosa. Nutr Rev. 2016;74:301–11.10.1093/nutrit/nuw001Suche in Google Scholar

[181] Solenberger SE. Exercise and eating disorders: a 3-year inpatient hospital record analysis. Eat Behav. 2001;2:151–68.10.1016/S1471-0153(01)00026-5Suche in Google Scholar

[182] Strober M, Freeman R, Morrell W. The long-term course of severe anorexia nervosa in adolescents: survival analysis of recovery, relapse, and outcome predictors over 10–15 years in a prospective study. Int J Eat Disord. 1997;22:339–60.10.1002/(SICI)1098-108X(199712)22:4<339::AID-EAT1>3.0.CO;2-NSuche in Google Scholar

[183] Simon J, Schmidt U, Pilling S. The health service use and cost of eating disorders. Psychol Med. 2005;35:1543–51.10.1017/S0033291705004708Suche in Google Scholar

[184] Nogueira JP, Valero R, Maraninchi M, Lorec AM, Samuelian-Massat C, Begu-Le Corroller A, et al. Growth hormone level at admission and its evolution during refeeding are predictive of short-term outcome in restrictive anorexia nervosa. Br J Nutr. 2013;109:2175–81.10.1017/S000711451200431XSuche in Google Scholar

[185] Clarke J, Ramoz N, Fladung AK, Gorwood P. Higher reward value of starvation imagery in anorexia nervosa and association with the Val66Met BDNF polymorphism. Transl Psychiatr. 2016;6:e829.10.1038/tp.2016.98Suche in Google Scholar

Received: 2018-01-22
Accepted: 2018-03-13
Published Online: 2018-03-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/hmbci-2018-0010/html?lang=de
Button zum nach oben scrollen