Abstract
Human cytosolic sulfotransferase 1C4 (hSULT1C4) is a dimeric Phase II drug-metabolizing enzyme primarily expressed in the developing fetus. SULTs facilitate the transfer of a hydrophilic sulfonate moiety from 3′-phosphoadenosine-5′-phosphosulfate (PAPS) onto an acceptor substrate altering the substrate’s biological activity and increasing the compound’s water solubility. While several of the hSULTs’ endogenous and xenobiotic substrates have been identified, the physiological function of hSULT1C4 remains unknown. The fetal expression of hSULT1C4 leads to the hypothesis that the function of this enzyme may be to regulate metabolic and hormonal signaling molecules, such as estrogenic compounds, that may be generated or consumed by the mother during fetal development. Human SULT1C4 has previously been shown to sulfonate estrogenic compounds, such as catechol estrogens; therefore, this study focused on the expression and purification of hSULT1C4 in order to further characterize this enzyme’s sulfonation of estrogenic compounds. Molecular modeling of the enzyme’s native properties helped to establish a novel purification protocol for hSULT1C4. The optimal activity assay conditions for hSULT1C4 were determined to be pH 7.4 at 37°C for up to 10 min. Kinetic analysis revealed the enzyme’s reduced affinity for PAPS compared to PAP. Human SULT1C4 sulfonated all the estrogenic compounds tested, including dietary flavonoids and environmental estrogens; however, the enzyme has a higher affinity for sulfonation of flavonoids. These results suggest hSULT1C4 could be metabolizing and regulating hormone signaling pathways during human fetal development.
Author Statement
Research funding: This work was supported by the National Institutes of Health Grant GM038953 and National Institutes of Health Grant ES022606.
Conflict of interest: The authors have no conflict of interest to report.
Informed consent: Informed consent is not applicable.
Ethical approval: The conducted research is not related to either human or animals use.
References
1. Strott CA. Sulfonation and molecular action. Endocr Rev 2002;23:703–32.10.1210/er.2001-0040Suche in Google Scholar
2. Falany CN. Enzymology of human cytosolic sulfotransferases. FASEB J 1997;11:206–16.10.1096/fasebj.11.4.9068609Suche in Google Scholar
3. Weinshilboum RM, Otterness DM, Aksoy IA, Wood TC, Her C, Raftogianis RB. Sulfation and sulfotransferases 1: sulfotransferase molecular biology: cDNAs and genes. FASEB J 1997;11:3–14.10.1096/fasebj.11.1.9034160Suche in Google Scholar
4. Meinl W, Tsoi C, Swedmark S, Tibbs ZE, Falany CN, Glatt H. Highly selective bioactivation of 1- and 2-hydroxy-3-methylcholanthrene to mutagens by individual human and other mammalian sulphotransferases expressed in Salmonella typhimurium. Mutagenesis 2013;28:609–19.10.1093/mutage/get039Suche in Google Scholar
5. Glatt H. Sulfotransferases in the bioactivation of xenobiotics. Chem Biol Interact 2000;129:141–70.10.1016/S0009-2797(00)00202-7Suche in Google Scholar
6. Goldstein DS, Swoboda KJ, Miles JM, Coppack SW, Aneman A, Holmes C, Lamensdorf I, Eisenhofer G. Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab 1999;84:2523–31.10.1210/jcem.84.7.5864Suche in Google Scholar PubMed
7. Visser TJ. Pathways of thyroid hormone metabolism. Acta Med Aust 1996;23:10–6.Suche in Google Scholar
8. Blanchard RL, Freimuth RR, Buck J, Weinshilboum RM, Coughtrie MW. A proposed nomenclature system for the cytosolic sulfotransferase (SULT) superfamily. Pharmacogenetics 2004;14:199–211.10.1097/00008571-200403000-00009Suche in Google Scholar PubMed
9. Glatt H. Sulfation and sulfotransferases 4: bioactivation of mutagens via sulfation. FASEB J 1997;11:314–21.10.1096/fasebj.11.5.9141497Suche in Google Scholar PubMed
10. Glatt H, Schneider H, Murkovic M, Monien BH, Meinl W. Hydroxymethyl-substituted furans: mutagenicity in Salmonella typhimurium strains engineered for expression of various human and rodent sulphotransferases. Mutagenesis 2012;27:41–8.10.1093/mutage/ger054Suche in Google Scholar PubMed
11. Glatt H, Pabel U, Meinl W, Frederiksen H, Frandsen H, Muckel E. Bioactivation of the heterocyclic aromatic amine 2-amino-3-methyl-9H-pyrido [2,3-b]indole (MeAalphaC) in recombinant test systems expressing human xenobiotic-metabolizing enzymes. Carcinogenesis 2004;25:801–7.10.1093/carcin/bgh077Suche in Google Scholar PubMed
12. Sakakibara Y, Yanagisawa K, Katafuchi J, Ringer DP, Takami Y, Nakayama T, Suiko M, Liu MC. Molecular cloning, expression, and characterization of novel human SULT1C sulfotransferases that catalyze the sulfonation of N-hydroxy-2-acetylaminofluorene. J Biol Chem 1998;273:33929–35.10.1074/jbc.273.51.33929Suche in Google Scholar PubMed
13. Stanley EL, Hume R, Coughtrie MW. Expression profiling of human fetal cytosolic sulfotransferases involved in steroid and thyroid hormone metabolism and in detoxification. Mol Cell Endocrinol 2005;240:32–42.10.1016/j.mce.2005.06.003Suche in Google Scholar PubMed
14. Runge-Morris M, Kocarek TA. Expression of the sulfotransferase 1C family: implications for xenobiotic toxicity. Drug Metab Rev 2013;45:450–9.10.3109/03602532.2013.835634Suche in Google Scholar PubMed
15. Nishiyama T, Ogura K, Nakano H, Kaku T, Takahashi E, Ohkubo Y, Sekine K, Hiratsuka A, Kadota S, Watabe T. Sulfation of environmental estrogens by cytosolic human sulfotransferases. Drug Metab Pharmacokinet 2002;17:221–8.10.2133/dmpk.17.221Suche in Google Scholar PubMed
16. Aksoy IA, Wood TC, Weinshilboum R. Human liver estrogen sulfotransferase: identification by cDNA cloning and expression. Biochem Bioph Res Commun 1994;200:1621–9.10.1006/bbrc.1994.1637Suche in Google Scholar PubMed
17. Hui Y, Yasuda S, Liu MY, Wu YY, Liu MC. On the sulfation and methylation of catecholestrogens in human mammary epithelial cells and breast cancer cells. Biol Pharm Bull 2008;31:769–73.10.1248/bpb.31.769Suche in Google Scholar PubMed
18. Rohn KJ, Cook IT, Leyh TS, Kadlubar SA, Falany CN. Potent inhibition of human sulfotransferase 1A1 by 17alpha-ethinylestradiol: role of 3′-phosphoadenosine 5′-phosphosulfate binding and structural rearrangements in regulating inhibition and activity. Drug Metab Dispos 2012;40:1588–95.10.1124/dmd.112.045583Suche in Google Scholar PubMed PubMed Central
19. Tong MH, Jiang H, Liu P, Lawson JA, Brass LF, Song WC. Spontaneous fetal loss caused by placental thrombosis in estrogen sulfotransferase-deficient mice. Nat Med 2005;11:153–9.10.1038/nm1184Suche in Google Scholar PubMed
20. Harris RM, Wood DM, Bottomley L, Blagg S, Owen K, Hughes PJ, Waring RH, Kirk CJ. Phytoestrogens are potent inhibitors of estrogen sulfation: implications for breast cancer risk and treatment. J Clin Endocrinol Metab 2004;89:1779–87.10.1210/jc.2003-031631Suche in Google Scholar PubMed
21. Harris RM, Waring RH. Sulfotransferase inhibition: potential impact of diet and environmental chemicals on steroid metabolism and drug detoxification. Curr Drug Metab 2008;9:269–75.10.2174/138920008784220637Suche in Google Scholar PubMed
22. Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, Loppnau P, Martin F, Thornton J, Edwards AM, Bochkarev A, Plotnikov AN, Vedadi M, Arrowsmith CH. Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol 2007;5:e97.10.1371/journal.pbio.0050097Suche in Google Scholar
23. Falany CN, Krasnykh V, Falany JL. Bacterial expression and characterization of a cDNA for human liver estrogen sulfotransferase. J Steroid Biochem 1995;52:529–39.10.1016/0960-0760(95)00015-RSuche in Google Scholar
24. Meloche CA, Falany CN. Expression and characterization of the human 3 beta-hydroxysteroid sulfotransferases (SULT2B1a and SULT2B1b). J Steroid Biochem 2001;77:261–9.10.1016/S0960-0760(01)00064-4Suche in Google Scholar
25. Rens-Domiano SS, Roth JA. Inhibition of M and P phenol sulfotransferase by analogues of 3′-phosphoadenosine-5′-phosphosulfate. J Neurochem 1987;48:1411–5.10.1111/j.1471-4159.1987.tb05679.xSuche in Google Scholar
26. Tibbs ZE, Falany CN. An engineered heterodimeric model to investigate SULT1B1 dependence on intersubunit communication. Biochem Pharmacol 2016.10.1016/j.bcp.2016.06.011Suche in Google Scholar
27. Bower MJ, Cohen FE, Dunbrack RL, Jr. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. J Mol Biol 1997;267:1268–82.10.1006/jmbi.1997.0926Suche in Google Scholar
28. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. Development and testing of a general amber force field. J Comput Chem 2004;25:1157–74.10.1002/jcc.20035Suche in Google Scholar
29. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graphics 1996;14:33–8, 27–8.10.1016/0263-7855(96)00018-5Suche in Google Scholar
30. Rastogi PA. MacVector. Integrated sequence analysis for the Macintosh. Meth Mol Biol 2000;132:47–69.10.1385/1-59259-192-2:47Suche in Google Scholar
31. Hochuli E, Dobeli H, Schacher A. New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues. J Chromatogr 1987;411:177–84.10.1016/S0021-9673(00)93969-4Suche in Google Scholar
32. Petrotchenko EV, Pedersen LC, Borchers CH, Tomer KB, Negishi M. The dimerization motif of cytosolic sulfotransferases. FEBS Lett 2001;490:39–43.10.1016/S0014-5793(01)02129-9Suche in Google Scholar
33. Peterson EA, Sober HA. Chromatography of proteins. I. Cellulose ion-exchange adsorbents. J Am Chem Soc 1956;78:751–5.10.1021/ja01585a016Suche in Google Scholar
34. Macritchie F. Proteins at Interfaces. In: C.B. Anfinsen JTE, Frederic MR, editors. Advances in protein chemistry. Volume 32: Cambridge, Massachusetts: Academic Press, 1978:283–326.10.1016/S0065-3233(08)60577-XSuche in Google Scholar
35. Goebel-Stengel M, Stengel A, Tache Y, Reeve JR, Jr. The importance of using the optimal plasticware and glassware in studies involving peptides. Anal Biochem 2011;414:38–46.10.1016/j.ab.2011.02.009Suche in Google Scholar PubMed PubMed Central
36. Klaassen CD, Boles JW. Sulfation and sulfotransferases 5: the importance of 3′-phosphoadenosine 5′-phosphosulfate (PAPS) in the regulation of sulfation. FASEB J 1997;11:404–18.10.1096/fasebj.11.6.9194521Suche in Google Scholar PubMed
37. Cook IT, Leyh TS, Kadlubar SA, Falany CN. Lack of substrate inhibition in a monomeric form of human cytosolic SULT2A1. Horm Mol Biol Clin Invest 2010;3:357–66.10.1515/hmbci.2010.041Suche in Google Scholar
38. Wang T, Cook I, Leyh TS. 3′-Phosphoadenosine 5′-phosphosulfate allosterically regulates sulfotransferase turnover. Biochemistry 2014;53:6893–900.10.1021/bi501120pSuche in Google Scholar PubMed PubMed Central
39. Bondesson M, Hao R, Lin CY, Williams C, Gustafsson JA. Estrogen receptor signaling during vertebrate development. Biochim Biophys Acta 2015;1849:142–51.10.1016/j.bbagrm.2014.06.005Suche in Google Scholar PubMed PubMed Central
40. Takayanagi S, Tokunaga T, Liu X, Okada H, Matsushima A, Shimohigashi Y. Endocrine disruptor bisphenol A strongly binds to human estrogen-related receptor gamma (ERRgamma) with high constitutive activity. Toxicol Lett 2006;167:95–105.10.1016/j.toxlet.2006.08.012Suche in Google Scholar PubMed
41. Her C, Kaur GP, Athwal RS, Weinshilboum RM. Human sulfotransferase SULT1C1: cDNA cloning, tissue-specific expression, and chromosomal localization. Genomics 1997;41:467–70.10.1006/geno.1997.4683Suche in Google Scholar PubMed
42. Suiko M, Sakakibara Y, Liu MC. Sulfation of environmental estrogen-like chemicals by human cytosolic sulfotransferases. Biochem Bioph Res Commun 2000;267:80–4.10.1006/bbrc.1999.1935Suche in Google Scholar PubMed
43. Pina AS, Lowe CR, Roque AC. Challenges and opportunities in the purification of recombinant tagged proteins. Biotechnol Adv 2014;32:366–81.10.1016/j.biotechadv.2013.12.001Suche in Google Scholar PubMed PubMed Central
44. Tibbs ZE, Rohn-Glowacki KJ, Crittenden F, Guidry AL, Falany CN. Structural plasticity in the human cytosolic sulfotransferase dimer and its role in substrate selectivity and catalysis. Drug Metab Pharmacokinet 2015;30:3–20.10.1016/j.dmpk.2014.10.004Suche in Google Scholar
45. Falany CN, Strom P, Swedmark S. Sulphation of o-desmethylnaproxen and related compounds by human cytosolic sulfotransferases. Br J Clin Pharmaco 2005;60:632–40.10.1111/j.1365-2125.2005.02506.xSuche in Google Scholar
46. Sun M, Leyh TS. The human estrogen sulfotransferase: a half-site reactive enzyme. Biochemistry 2010;49:4779–85.10.1021/bi902190rSuche in Google Scholar
47. Wang T, Cook I, Falany CN, Leyh TS. Paradigms of sulfotransferase catalysis – the mechanism of SULT2A1. J Biol Chem 2014;289:26474–80.10.1074/jbc.M114.573501Suche in Google Scholar
48. Tyapochkin E, Cook PF, Chen G. Isotope exchange at equilibrium indicates a steady state ordered kinetic mechanism for human sulfotransferase. Biochemistry 2008;47:11894–9.10.1021/bi801211tSuche in Google Scholar
49. Tyapochkin E, Kumar VP, Cook PF, Chen G. Reaction product affinity regulates activation of human sulfotransferase 1A1 PAP sulfation. Arch Biochem Biophys 2011;506:137–41.10.1016/j.abb.2010.11.018Suche in Google Scholar
50. Cook IT, Leyh TS, Kadlubar SA, Falany CN. Structural rearrangement of SULT2A1: effects on dehydroepiandrosterone and raloxifene sulfation. Horm Mol Biol Clin Invest 2010;1:81–7.10.1515/hmbci.2010.012Suche in Google Scholar
51. Brzeznicka EA, Hazelton GA, Klaassen CD. Comparison of adenosine 3′-phosphate 5′-phosphosulfate concentrations in tissues from different laboratory animals. Drug Metab Dispos 1987;15:133–5.10.1016/S0090-9556(25)06599-7Suche in Google Scholar
52. Kim HJ, Rozman P, Madhu C, Klaassen CD. Homeostasis of sulfate and 3′-phosphoadenosine 5′-phosphosulfate in rats after acetaminophen administration. J Pharmacol Exp Ther 1992;261:1015–21.10.1016/S0022-3565(25)11113-0Suche in Google Scholar
53. Cappiello M, Franchi M, Giuliani L, Pacifici GM. Distribution of 2-naphthol sulphotransferase and its endogenous substrate adenosine 3′-phosphate 5′-phosphosulphate in human tissues. Eur J Clin Pharmacol 1989;37:317–20.10.1007/BF00679793Suche in Google Scholar
54. Cappiello M, Franchi M, Rane A, Pacifici GM. Sulphotransferase and its substrate: adenosine-3′-phosphate-5′-phosphosulphate in human fetal liver and placenta. Dev Pharmacol Therap 1990;14:62–5.10.1159/000480940Suche in Google Scholar
55. Adlercreutz H, Yamada T, Wahala K, Watanabe S. Maternal and neonatal phytoestrogens in Japanese women during birth. Am J Obstet Gynecol 1999;180(3 Pt 1):737–43.10.1016/S0002-9378(99)70281-4Suche in Google Scholar
56. Schroder-van der Elst JP, van der Heide D, Rokos H, Morreale de Escobar G, Kohrle J. Synthetic flavonoids cross the placenta in the rat and are found in fetal brain. Am J Physiol 1998;274 (2 Pt 1):E253–6.10.1152/ajpendo.1998.274.2.E253Suche in Google Scholar PubMed
57. Waring RH, Ayers S, Gescher AJ, Glatt HR, Meinl W, Jarratt P, Kirk CJ, Pettitt T, Rea D, Harris RM. Phytoestrogens and xenoestrogens: the contribution of diet and environment to endocrine disruption. J Steroid Biochem 2008;108:213–20.10.1016/j.jsbmb.2007.09.007Suche in Google Scholar PubMed
58. Nakano H, Ogura K, Takahashi E, Harada T, Nishiyama T, Muro K, Hiratsuka A, Kadota S, Watabe T. Regioselective monosulfation and disulfation of the phytoestrogens daidzein and genistein by human liver sulfotransferases. Drug Metab Pharmacokinet 2004;19:216–26.10.2133/dmpk.19.216Suche in Google Scholar PubMed
59. Ung D, Nagar S. Variable sulfation of dietary polyphenols by recombinant human sulfotransferase (SULT) 1A1 genetic variants and SULT1E1. Drug Metab Dispos 2007;35:740–6.10.1124/dmd.106.013987Suche in Google Scholar PubMed
60. Brand W, Boersma MG, Bik H, Hoek-van den Hil EF, Vervoort J, Barron D, Meinl W, Glatt H, Williamson G, van Bladeren PJ, Rietjens IM. Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metab Dispos 2010;38:617–25.10.1124/dmd.109.031047Suche in Google Scholar PubMed
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Review Article
- The evolution of genomic stability to a mechanism in reproduction and psychiatry
- Original Articles
- 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression
- Expression, purification and characterization of human cytosolic sulfotransferase (SULT) 1C4
- Letter to the Editor
- Comment on: “Is there a role for vitamin D in human reproduction?”
Artikel in diesem Heft
- Frontmatter
- Review Article
- The evolution of genomic stability to a mechanism in reproduction and psychiatry
- Original Articles
- 17β-Estradiol suppresses visceral adipogenesis and activates brown adipose tissue-specific gene expression
- Expression, purification and characterization of human cytosolic sulfotransferase (SULT) 1C4
- Letter to the Editor
- Comment on: “Is there a role for vitamin D in human reproduction?”