Mechanical, thermo-mechanical and water uptake performance of wood flour filled polyurethane elastomer eco-composites: influence of surface treatment of wood flour
Abstract
Alkaline and silane treatments were applied to wood flour (WF) to enrich its adhesion to bio-based thermoplastic polyurethane (TPU) matrix. TPU/WF eco-composites were prepared at a constant ratio of 30% by the melt blending process. The mechanical, thermo-mechanical, melt-flow, water uptake and morphological properties of the materials were investigated. Silane-treated WF filled composite exhibited better mechanical performance with respect to untreated WF due to enhancement of adhesion between WF and TPU matrix after surface treatments. This sample also gave the lowest water absorption value among composites. The results confirmed that silane treatment of WF led to significant improvement on the mechanical and physical properties of TPU-based composites in addition to an improved water resistance for outdoor applications.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
References
Altun, Y., Dogan, M., Bayramli, E. (2016) Flammability and thermal degradation behavior of flame retardant treated wood flour containing intumescent LDPE composites. Eur. J. Wood Wood Prod. 74:851–856.10.1007/s00107-016-1042-1Suche in Google Scholar
Aranguren, M.I., González, J.F., Mosiewicki, M.A. (2012) Biodegradation of a vegetable oil based polyurethane and wood flour composites. Polym. Test. 31:7–15.10.1016/j.polymertesting.2011.09.001Suche in Google Scholar
Atiqah, A., Jawaid, M., Sapuan, S.M., Ishak, M.R. (2018) Mechanical and thermal properties of sugar palm fiber reinforced thermoplastic polyurethane composites: effect of silane treatment and fiber loading. J. Renew. Mater. 6:1–10.10.7569/JRM.2017.634188Suche in Google Scholar
Balasuriya, P.W., Ye, L., Mai, Y.-W. (2001) Mechanical properties of wood flake–polyethylene composites. Part I: effects of processing methods and matrix melt flow behaviour. Compos. Part A Appl. Sci. Manuf. 32:619–629.10.1016/S1359-835X(00)00160-3Suche in Google Scholar
Bayramli, E., Tayfun, U., Dogan, M. (2015) Investigating agricultural waste-reinforced polyurethane elastomer green composites. Plast. Res. Online 2015:1–4.Suche in Google Scholar
Bente, M., Avramidis, G., Förster, S., Rohwer, E.G., Viöl, W. (2004) Wood surface modification in dielectric barrier discharges at atmospheric pressure for creating water repellent characteristics. Eur. J. Wood Wood Prod. 62:157–163.10.1007/s00107-004-0475-0Suche in Google Scholar
Bi, H., Ren, Z., Guo, R., Xu, M., Song, Y. (2018) Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind. Crops. Prod. 122:76–84.10.1016/j.indcrop.2018.05.059Suche in Google Scholar
Borysiak, S., Doczekalska, B. (2006) Influence of chemical modification of wood on the crystallisation of polypropylene. Eur. J. Wood Wood Prod. 64:451–454.10.1007/s00107-006-0097-9Suche in Google Scholar
Casado, U., Marcovich, N.E., Aranguren, M.I., Mosiewicki, M.A. (2009) High-strength composites based on tung oil polyurethane and wood flour: effect of the filler concentration on the mechanical properties. Polym. Eng. Sci. 49:713–721.10.1002/pen.21315Suche in Google Scholar
Coutinho, F.M.B., Costa, T.H.S., Carvalho, D.L. (1997) Polypropylene-wood fibre composites: effect of treatment and mixing conditions on mechanical properties. J. Appl. Polym. Sci. 65:1227–1235.10.1002/(SICI)1097-4628(19970808)65:6<1227::AID-APP18>3.0.CO;2-QSuche in Google Scholar
Datta, J., Kopczyńska, P. (2015) Effect of kenaf fibre modification on morphology and mechanical properties of thermoplastic polyurethane materials. Ind. Crops Prod. 74:566–576.10.1016/j.indcrop.2015.05.080Suche in Google Scholar
Diestel, S., Krause, A. (2018) Wood based composites with thermoplastic polyurethane as matrix polymer. J. Appl. Polym. Sci. 135:46344.10.1002/app.46344Suche in Google Scholar
Donath, S., Militz, H., Mai, C. (2004) Wood modification with alkoxysilanes. Wood Sci. Technol. 38:555–566.10.1007/s00226-004-0257-1Suche in Google Scholar
Donath, S., Militz, H., Mai, C. (2006) Creating water-repellent effects on wood by treatment with silanes. Holzforschung 60:40–46.10.1515/HF.2006.008Suche in Google Scholar
El-Shekeil, Y.A., Sapuan, S.M., Abdan, K., Zainudin, E.S. (2012) Influence of fiber content on the mechanical and thermal properties of Kenaf fiber reinforced thermoplastic polyurethane composites. Mater. Design 40:299–303.10.1016/j.matdes.2012.04.003Suche in Google Scholar
Evans, P.D. (1988) A note on assessing the deterioration of thin wood veneers during weathering. Wood Fiber Sci 20:487–492.Suche in Google Scholar
Evans, P.D., Banks, W.B. (1988) Degradation of wood surfaces by water-changes in mechanical properties of thin wood strips. Eur. J. Wood Wood Prod. 46:427–435.10.1007/BF02608208Suche in Google Scholar
Haghighatnia, T., Abbasian, A., Morshedian, J. (2017) Hemp fiber reinforced thermoplastic polyurethane composite: an investigation in mechanical properties. Ind. Crops Prod. 108:853–863.10.1016/j.indcrop.2017.07.020Suche in Google Scholar
Hill, C.A.S. (2000) Wood-plastic composites: strategies for compatibilising the phases. J. Inst. Wood Sci. 15:140–146.Suche in Google Scholar
Hill, C.A.S., Mastery Farahani, M.R., Hale, M.D.C. (2004) The use of organo alkoxysilane coupling agents for wood preservation. Holzforschung 58:316–325.10.1515/HF.2004.049Suche in Google Scholar
Himmelsbach, D.S., Khalili, S., Akin, D.E. (1998) FT-IR microspectroscopic imaging of flax (Linum usitatissimum L.) stems. Mol. Cell. Biol. 44:99–108.Suche in Google Scholar
Hon, D.N.-S. Chemical Modification of Lignocellulosic Materials. Marcel Dekker Inc., New York, USA, 1996.Suche in Google Scholar
Ichazo, M.N., Albano, C., González, J., Perera, R., Candal, M.V. (2001) Polypropylene/wood flour composites: treatments and properties. Compos. Struct. 54:207–214.10.1016/S0263-8223(01)00089-7Suche in Google Scholar
Kazayawoko, M., Balatinecz, J.J., Matuana, L.M. (1999) Surface modification and adhesion mechanisms in woodfibre-polypropylene composites. J. Mater. Sci. 34:6189–6199.10.1023/A:1004790409158Suche in Google Scholar
Kiguchi, M. (1996) Surface modification and activation of wood. In: Chemical Modification of Lignocellulosic Materials. Ed. Hon, D.N. Marcel Dekker, New York. pp. 197–227.10.1201/9781315139142-8Suche in Google Scholar
Krishnamurthi, B., Bharadwaj-Somaskandan, S., Sergeeva, T., Shutov, F. (2003) Effect of wood flour fillers on density and mechanical properties of polyurethane foams. Cell. Polym. 22:371–381.10.1177/026248930302200602Suche in Google Scholar
Kumar, S. (1994) Chemical modification of wood. Wood Fiber Sci. 26:270–280.Suche in Google Scholar
Li, Q., Matuana, L.M. (2003) Foam extrusion of high-density polyethylene/wood-flour composites using chemical foaming agents. J. Appl. Polym. Sci. 88:3139–3150.10.1002/app.12003Suche in Google Scholar
Madera Santana, T., Soto Valdez, H., Richardson, M. (2013) Influence of surface treatments on the physicochemical properties of short sisal fibers: ethylene vinyl acetate composites. Polym. Eng. Sci. 53:59–68.10.1002/pen.23232Suche in Google Scholar
Mosiewicki, M.A., Dell’Arciprete, G.A., Aranguren, M.I., Marcovich, N.E. (2009) Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J. Compos. Mater. 43:3057–3072.10.1177/0021998309345342Suche in Google Scholar
Nachtigall, S.M.B., Cerveira, G.S., Rosa, S.M.L. (2007) New polymeric-coupling agent for polypropylene/wood–flour composites. Polym. Test. 26:619–628.10.1016/j.polymertesting.2007.03.007Suche in Google Scholar
Nunez, A.J., Kenny, J.M., Reboredo, M.M., Arangunen, M.I., Marcovich, N.E. (2002) Thermal and dynamic mechanical characterization of polypropylene-woodflour composites. Polym. Eng. Sci. 42:733–742.10.1002/pen.10985Suche in Google Scholar
Raj, R.G., Kokta, B.V., Maldas, D., Daneault, C. (1989) Use of wood fibers in thermoplastics. VII. The effect of coupling agents in polyethylene-wood fiber composites. J. Appl. Polym. Sci. 37:1089–1103.10.1002/app.1989.070370420Suche in Google Scholar
Ráz, I., Andersen, E., Aranguren, M.I., Marcovich, N.E. (2009) Wood flour-Recycled polyol based polyurethane lightweight composite. J. Compos. Mater. 43:2871–2884.10.1177/0021998309345308Suche in Google Scholar
Rials, T.G., Wolcott, M.P. (1998) Morphology-property relationships in wood-fibre-based polyurethanes. J. Mat. Sci. Lett. 17:317–319.10.1023/A:1006541924489Suche in Google Scholar
Rowell, R.M. (1992) Property enhancement of wood composites. In: Composite Applications – The Role of Matrix, Fibre and Interface. Eds. Rowell, R.M., Vigo, T., Kinzig, B. Ch. 4. VCH Publishers, New York, USA.Suche in Google Scholar
Sapuan, M., Pua, F., El-Shekeil, Y.A., AL-Oqla, F.M. (2013) Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Mater. Design 50:467–470.10.1016/j.matdes.2013.03.013Suche in Google Scholar
Seefeldt, H., Braun, U.A. (2012) New flame retardant for wood materials tested in wood-plastic composites. Macromol. Mater. Eng. 297:814–820.10.1002/mame.201100382Suche in Google Scholar
Strawder, G.T., Hosur, M.V., Jeelani, S., Zhou, Y. (2009) Themal and mechanical studies of wood flour reinforced polyurethane composites. SAMPE Fall Technical Conference and Exhibition – Global Material Technology: Soaring to New Horizons; Wichita, KS, USA.Suche in Google Scholar
Tayfun, U., Dogan, M., Bayramli, E. (2016a) Effect of surface modification of rice straw on mechanical and flow properties of TPU based green composites. Polym. Compos. 37:1596–1602.10.1002/pc.23331Suche in Google Scholar
Tayfun, U., Dogan, M., Bayramli, E. (2016b) Influence of surface modifications of flax fiber on mechanical and flow properties of thermoplastic polyurethane based eco-composites. J. Nat. Fibers 13:309–320.10.1080/15440478.2015.1029191Suche in Google Scholar
Tayfun, U., Dogan, M., Bayramli, E. (2017) Investigations of the flax fiber/thermoplastic polyurethane eco-composites: influence of isocyanate modification of flax fiber surface. Polym. Compos. 38:2874–2880.10.1002/pc.23889Suche in Google Scholar
Tserki, V., Zafeiropoulos, N.E., Simon, F., Panayiotou, C. (2005) A Study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos. Part A Appl. Sci. Manuf. 36:1110–1118.10.1016/j.compositesa.2005.01.004Suche in Google Scholar
Yuan, J., Shi, S.Q. (2009) Effect of the addition of wood flours on the properties of rigid polyurethane foam. J. Appl. Polym. Sci. 113:2902–2909.10.1002/app.30322Suche in Google Scholar
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Articles
- Rapid identification of wood species by near-infrared spatially resolved spectroscopy (NIR-SRS) based on hyperspectral imaging (HSI)
- Comparison of various multivariate models to estimate structural properties by means of non-destructive techniques (NDTs) in Pinus sylvestris L. timber
- Influence of length on acoustic time-of-flight (ToF) measurement in built-in structures of Norway spruce timber
- Characterization of Pinus nigra var. laricio [Maire] bark extracts at the analytical and pilot scale
- Determination of the absolute molar mass of acetylated eucalyptus kraft lignin by two types of size-exclusion chromatography combined with multi-angle laser light-scattering detectors
- Moisture-induced deformation in the neck of a classical guitar
- Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of “group method of data handling” (GMDH) neural network
- A self-cleaning surface based on heat treatment of g-C3N4-coated wood prepared by a rapid and eco-friendly method
- Mechanical, thermo-mechanical and water uptake performance of wood flour filled polyurethane elastomer eco-composites: influence of surface treatment of wood flour
- Investigation of a new formaldehyde-free adhesive consisting of soybean flour and Kymene® 736 for interior plywood
- Negative oxygen ion (NOI) production by enhanced photocatalytic TiO2/GO composites anchored on wooden substrates
Artikel in diesem Heft
- Frontmatter
- Original Articles
- Rapid identification of wood species by near-infrared spatially resolved spectroscopy (NIR-SRS) based on hyperspectral imaging (HSI)
- Comparison of various multivariate models to estimate structural properties by means of non-destructive techniques (NDTs) in Pinus sylvestris L. timber
- Influence of length on acoustic time-of-flight (ToF) measurement in built-in structures of Norway spruce timber
- Characterization of Pinus nigra var. laricio [Maire] bark extracts at the analytical and pilot scale
- Determination of the absolute molar mass of acetylated eucalyptus kraft lignin by two types of size-exclusion chromatography combined with multi-angle laser light-scattering detectors
- Moisture-induced deformation in the neck of a classical guitar
- Prediction of physical and mechanical properties of thermally modified wood based on color change evaluated by means of “group method of data handling” (GMDH) neural network
- A self-cleaning surface based on heat treatment of g-C3N4-coated wood prepared by a rapid and eco-friendly method
- Mechanical, thermo-mechanical and water uptake performance of wood flour filled polyurethane elastomer eco-composites: influence of surface treatment of wood flour
- Investigation of a new formaldehyde-free adhesive consisting of soybean flour and Kymene® 736 for interior plywood
- Negative oxygen ion (NOI) production by enhanced photocatalytic TiO2/GO composites anchored on wooden substrates