Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique
-
Michael Pockrandt
Abstract
The study aimed at treating metil (Sterculia appendiculata K. Schum) and neem (Azadirachta indica A. Juss) timber from Mozambique under industrial conditions by steam [Thermowood® (TW)] and vacuum [Termovuoto (TV)] thermal modifications (TM). Matched boards were treated identically and wood alterations in chemistry, colour, mass loss (ML), mechanical properties and durability were compared. The applied vacuum partly removed the acetic acid that causes carbohydrate degradation, i.e. heat applied under vacuum was less destructive. TM under vacuum generated a lighter colour than that caused by steam treatment. ML was significantly higher after the TW process namely, 14.1 vs. 9.9% after thermo-vacuum treatment for metil and 14.2 and 12.1% for neem. Colour and ML changes correlated with the decrease in shear strength, rupture and elasticity moduli and increase in wood decay resistance. Metil wood is more permeable and demonstrated significant differences between the treatments; the thermo-vacuum process was less destructive but led to less improvement of durability compared to TW treatment.
Acknowledgements
The authors gratefully acknowledge the financial support provided by the Swedish Research Council (Vetenskapsrådet) and the Eco-Innovation initiative-EU project TV4NEWOOD ECO/12/333079, Grant Number: ECO/12/333079. Special thanks to Gustav Åström and Erik Åström for the Thermowood® thermal modification at HeatWood AB, Forsa.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Employment or leadership: None declared.
Honorarium: None declared.
References
Akpan, M. (2009) Studies on hardness property of neem wood growing in Nigeria. ProLigno 4:11.Suche in Google Scholar
Alberto, M.M. A contribuição do sector florestal e faunístico para a economia do país. Direcção Nacional de Terras e Florestas, Maputo, 2006. (in Portuguese)Suche in Google Scholar
Ali, A.C., Uetimane, E. Jr. (2010) Physical and mechanical properties of metil (Sterculia appendiculata K. Schum), a lesser used timber species from Mozambique. In: Wood Structure and Properties. Eds. Kúdela, J., Lagana, R. Arbora Publishers, Zvolen, Slovakia. pp. 149–154.Suche in Google Scholar
Ali, A.C., Uetimane, E. Jr., Lhate, I.A., Terziev, N. (2008) Anatomical characteristics, properties and use of traditionally used and lesser-known wood species from Mozambique: a literature review. Wood Sci. Technol. 42:453–472.10.1007/s00226-008-0186-5Suche in Google Scholar
Allegretti, O., Brunetti, M., Cuccui, I., Ferrari, S., Nocetti, M., Terziev, N. (2012) Thermo-vacuum modification of spruce (Picea abies Karst.) and fir (Abies alba Mill.) wood. BioResources 7:3656–3669.Suche in Google Scholar
Araújo, S. de O., Neiva, D.M., Gominho, J., Esteves, B., Pereira, H. (2017) Chemical effects of a mild torrefaction on the wood of eight Eucalyptus species. Holzforschung 71:291–298.10.1515/hf-2016-0079Suche in Google Scholar
Boonstra, M.J., Van Acker, J., Tjeerdsma, B.F., Kegel, E.F. (2007) Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals Forest Sci. 64:679–690.10.1051/forest:2007048Suche in Google Scholar
Brischke, C., Welzbacher, C.R., Brandt, K., Rapp, A.O. (2007) Quality control of thermally modified timber: interrelationship between heat treatment intensities and CIE L*a*b* color data on homogenized wood samples. Holzforschung 61:19–22.10.1515/HF.2007.004Suche in Google Scholar
Candelier, K., Dumarçay, S., Pétrissans, A., Gérardin, P., Pétrissans, M. (2013a) Comparison of mechanical properties of heat treated beech wood cured under nitrogen or vacuum. Polym. Degrad. Stab. 98:1762–1765.10.1016/j.polymdegradstab.2013.05.026Suche in Google Scholar
Candelier, K., Dumarçay, S., Pétrissans, A., Desharnais, L., Gérardin, P., Pétrissans, M. (2013b) Comparison of chemical composition and decay durability of heat treated wood cured under different inert atmospheres: nitrogen or vacuum. Polym. Degrad. Stab. 98:677–681.10.1016/j.polymdegradstab.2012.10.022Suche in Google Scholar
Centre for Ecology, Law, Policy. The management and ecology of Tanzanian forests. Environment Department. The University of York, York, 2001.Suche in Google Scholar
Cuccui, I., Negro, F., Zanuttini, R., Espinoza, M., Allegretti, O. (2017) Thermo-vacuum modification of teak wood from fast-growth plantation. Bioresources 121:1903–1915.10.15376/biores.12.1.1903-1915Suche in Google Scholar
Daniel, G. (2003) Microview of wood under degradation by bacteria and fungi. In: Wood Deterioration and Preservation. Eds. Goodell, B., Nicholas, D.D., Schultz, T.P. ACS Publications, Washington, DC. pp. 34–72.10.1021/bk-2003-0845.ch004Suche in Google Scholar
DNFFB. (2002) Regulamento da lei de florestas e fauna bravia. Decreto no. 12/2002. Lei de Florestas e Fauna Bravia.Suche in Google Scholar
Esteves, B., Marques, A.V., Domingos, I., Pereira, H. (2007a) Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Sci. Technol. 41:193–207.10.1007/s00226-006-0099-0Suche in Google Scholar
Esteves, B., Domingos, I., Pereira, H. (2007b) Improvement of technological quality of eucalypt wood by heat treatment in air at 170–200°C. For. Prod. J. 57:47–52.Suche in Google Scholar
European Committee for Standardization (1989) EN 84. Wood preservatives: accelerated ageing of treated wood prior to biological testing: Leaching procedure. European Committee for Standardization (CEN), Brussels, Belgium.Suche in Google Scholar
European Committee for Standardization (1994) EN 350-1, Durability of wood and wood-based products – Natural durability of solid wood. Part 1: Guide to the principles of testing and classification of the natural durability of wood. European Committee for Standardization (CEN), Brussels, Belgium.Suche in Google Scholar
European Committee for Standardization (2004) EN 113. Wood preservatives. Test method for determining the protective effectiveness against wood destroying basidiomycetes. Determination of the toxic values. European Committee for Standardization (CEN), Brussels, Belgium.Suche in Google Scholar
Eurostat. (2015) http://ec.europa.eu/eurostat. Accessed on 12 September 2015.Suche in Google Scholar
Gao, J., Kim, J.S., Terziev, N., Daniel, G. (2016) Decay resistance of softwoods and hardwoods thermally modified by the thermovouto type thermo-vacuum process to brown rot and white rot fungi. Holzforschung 70:877–884.10.1515/hf-2015-0244Suche in Google Scholar
Gonzalez-Pena, M.M., Hale, M.D.C. (2009) Colour in thermally modified wood of beech, Norway spruce and Scots pine. Part 2: property predictions from colour changes. Holzforschung 63:394–401.10.1515/HF.2009.077Suche in Google Scholar
Hill, C., Popescu, C-M., Rautkari, L., Curling, S., Ormondroyd, G., Xie, Y., Jalaludin, Z. (2014) The role of hydroxyl groups in determining the sorption properties of modified wood. European Conference on Wood Modification, Lisbon, Portugal, DOI: 10.13140/2.1.4040.4483.10.13140/2.1.4040.4483Suche in Google Scholar
Hon, D.N.S., Minemura, N. (2001) Color and discoloration. In: Wood and Cellulosic Chemistry. Eds. Hon, D.N.S., Shiraishi, N. Marcel Dekker, New York. pp. 385–442.10.1201/9781482269741-15Suche in Google Scholar
Hosseinpourpia, R., Mai, C. (2016) Mode of action of brown rot decay resistance of thermally modified wood: resistance to Fenton’s reagent. Holzforschung 70:691–697.10.1515/hf-2015-0141Suche in Google Scholar
Hyde, M.A., Wursten, B.T., Ballings, P., Coates Palgrave, M. (2017) Flora of Zimbabwe: Sterculia appendiculata K. Schum. http://www.zimbabweflora.co.zw. Accessed on 17 February 2017.Suche in Google Scholar
International Standard ISO 3129. (1975) Wood – Sampling methods and general requirements for physical and mechanical tests.Suche in Google Scholar
International Standard ISO 3131. (1975) Wood – Determination of density for physical and mechanical tests.Suche in Google Scholar
International Standard ISO 3132. (1975) Wood – Testing in compression perpendicular to grain.Suche in Google Scholar
International Standard ISO 3133. (1975) Wood – Determination of ultimate strength in static bending.Suche in Google Scholar
International Standard ISO 3347. (1976) Wood – Determination of ultimate shear stress parallel to grain.Suche in Google Scholar
International Standard ISO 3349. (1975) Wood – Determination of modulus of elasticity in static bending.Suche in Google Scholar
International Standard ISO 3350. (1975) Wood – Determination of static hardness.Suche in Google Scholar
International Standard ISO 3787. (1976) Wood – Test method – Determination of ultimate stress in compression parallel to grain.Suche in Google Scholar
Javed, M.A., Kekkonen, P.M., Ahola, S., Telkki, V.-V. (2015) Magnetic resonance imaging study of water absorption in thermally modified pine wood. Holzforschung 69:899–907.10.1515/hf-2014-0183Suche in Google Scholar
Johansson, D., Moren, T. (2006) The potential of colour measurement for strength prediction of thermally treated wood. Eur. J. Wood Wood Prod. 64:104–110.10.1007/s00107-005-0082-8Suche in Google Scholar
Kaygin, B., Gunduz, G., Aydemir, A. (2009) Some physical properties of heat-treated paulownia (Paulownia elongata) wood. Drying Technol. 27:89–93.10.1080/07373930802565921Suche in Google Scholar
Källbom, S., Sedighi Moghaddam, M., Wålinder, M.E.P. (2018) Liquid sorption, swelling and surface energy properties of unmodified and thermally modified Scots pine heartwood after extraction. Holzforschung 72:251–258.10.1515/hf-2017-0064Suche in Google Scholar
Kim, J.S., Gao, J., Terziev, N., Cuccui, I., Daniel, G. (2015a) Chemical and ultrastructural changes of ash wood thermally modified using the thermo-vacuum process: I. Histo/cytochemical studies on changes in the structure and lignin chemistry. Holzforschung 69:603–613.10.1515/hf-2014-0148Suche in Google Scholar
Kim, J.S., Gao, J., Terziev, N., Allegretti, O., Daniel, G. (2015b) Chemical and ultrastructural changes of ash wood thermally modified (TMW) using the thermo-vacuum process: II. Immunocytochemical study of the distribution of noncellulosic polysaccharides. Holzforschung 69:615–625.10.1515/hf-2014-0149Suche in Google Scholar
Korkut, S. (2012) Performance of three thermally treated tropical wood species commonly used in Turkey. Ind. Crops Prod. 36:355–362.10.1016/j.indcrop.2011.10.004Suche in Google Scholar
Lhate, I., Cuvilas, C.A., Terziev, N., Jirjis, R. (2010) Chemical composition of traditionally and lesser used wood species from Mozambique. Wood Mat. Sci. Eng. 5:143–150.10.1080/17480272.2010.484867Suche in Google Scholar
Li, S.J., Kocaefe, D., Zhang, J. (2007) Mechanical behavior of Québec wood species heat-treated using ThermoWood process. Holz Roh- Werkst. 65:255–259.10.1007/s00107-007-0173-9Suche in Google Scholar
Li, T., Cai, J.-B., Avramidis, S., Cheng, D.-l., Wålinder, M.E.P., Zhou, D.-G. (2017) Effect of conditioning history on the characterization of hardness of thermo-mechanical densified and heat treated poplar wood. Holzforschung 71:515–520.10.1515/hf-2016-0178Suche in Google Scholar
Mburu, F., Dumarçay, S., Huber, F., Petrissans, M., Gérardin, P. (2007) Evaluation of thermally modified Grevillea robusta heartwood as an alternative to shortage of wood resource in Kenya: characterisation of physicochemical properties and improvement of bio-resistance. Bioresource Tech. 98:3478–3486.10.1016/j.biortech.2006.11.006Suche in Google Scholar PubMed
Ministério de Administração Estatal (MAE). (2005a) Perfil do distrito de Montepuez. Província de Cabo Delgado. Série: Perfís Distritais. Ministério de Administração Estatal, Maputo.Suche in Google Scholar
Ministério de Administração Estatal (MAE). (2005b) Perfil do distrito de Mussuril. Província de Nampula. Série: Perfís Distritais. Ministério de Administração Estatal, Maputo.Suche in Google Scholar
Mohareb, A., Sirmah, P., Pétrissans, M., Gérardin, P. (2012) Effect of heat treatment intensity on wood chemical composition and decay durability of Pinus patula. Eur. J. Wood Wood Prod. 70:519–524.10.1007/s00107-011-0582-7Suche in Google Scholar
Mossini, S.A.G., Kemmelmeier, C. (2005) A árvore Nim (Azadirachta indica A. Juss): múltiplos usos. Acta Farmacol. 24:139–148.Suche in Google Scholar
Ogle, A., Nhantumbo, I. Improving the Competitiveness of the Timber and Wood Sector in Mozambique. USAID, Maputo, Mozambique, 2006.Suche in Google Scholar
Oliver, R. Europe’s Changing Tropical Timber Trade: Baseline Report of the Independent Market Monitoring Initiative. ITTO Technical Series no. 45. International Tropical Timber Organization, Yokohama, Japan, 2015.Suche in Google Scholar
Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., Anthony, S. Agroforestree Database: A Tree Reference and Selection Guide Version 4.0. World Agroforestry Centre, Kenya, 2009.Suche in Google Scholar
Phogat, S., Singh, K.K., Yadav, S., Yadav, B.S. (2009) Synthesis and biological activity of neem (Azadirachta indica A. Juss) compounds. In: Neem. Ed. Treatise, A.I.K. International Publishing House Pvt Ltd., New Delhi. pp. 232.Suche in Google Scholar
Ravindranath, B. (1993) Geographical variation in the chemical composition of neem. In: Genetic Improvement of Neem: Strategies for the Future. Proc. of the Int. Consultation on Neem Improvement, Kasetsart University. Eds. Read, M., French, J.H. Winrock International, Bangkok, Thailand. pp. 107–114.Suche in Google Scholar
Rowell, R.M. (1996) Physical and mechanical properties of chemically modified wood. In: Chemical Modification of Lignocellulosic Materials. Ed. Hon, D.S. CRC Press, New York. pp. 295–310.Suche in Google Scholar
Sayer, J.A., Harcourt, C.S., Collins, N.M. (1992) The conservation atlas of tropical forests: Africa. Macmillan Publishers Ltd., ISBN 0333 57757-4. pp. 56–61.10.1007/978-1-349-12961-4_7Suche in Google Scholar
Sluiter, A., Hames, B., Ruisz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2011) Determination of carbohydrates and lignin in biomas. Laboratory analytical procedure (LAP), NREL/TP 510–542618.Suche in Google Scholar
Sonderegger, W., Mannes, D., Kaestner, A., Hovind, J., Lehmann, E. (2015) On-line monitoring of hygroscopicity and dimensional changes of wood during thermal modification by means of neutron imaging methods. Holzforschung 69:87–95.10.1515/hf-2014-0008Suche in Google Scholar
Tewari, D.N. (1993) Neem research at ICFRE. In: Genetic Improvement of Neem: Strategies for the Future. Proc. of the Int. Consultation on Neem Improvement, Kasetsart University. Eds. Read, M. French, J.H. Winrock International, Bangkok, Thailand. pp. 1–10.Suche in Google Scholar
Uetimane, E. Jr. (2010) Anatomy, drying behaviour and mechanical properties of lesser used wood species from Mozambique. Doc. thesis, Swed. Univ. Agr. Sci. ISBN 978-91-576-7511–7518.Suche in Google Scholar
Uetimane, E. Jr., Terziev, N., Daniel, G. (2009) Wood anatomy of three lesser known species from Mozambique. IAWA 30:277–291.10.1163/22941932-90000219Suche in Google Scholar
Varga, D., van der Zee, M.E. (2008) Influence of steaming on selected wood properties of four hardwood species. Holz- Roh- Werkst. 66:11–18.10.1007/s00107-007-0205-5Suche in Google Scholar
Wang, W., Chen, C, Cao, J., Zhu, Y. (2018) Improved properties of thermally modified wood (TMW) by combined treatment with disodium octoborate tetrahydrate (DOT) and wax emulsion (WE). Holzforschung 72:243–250.10.1515/hf-2017-0043Suche in Google Scholar
Willems, W., Lykidis, C., Altgen, M., Clauder, L. (2015) Quality control methods for thermally modified wood. Holzforschung 69:875–884.10.1515/hf-2014-0185Suche in Google Scholar
Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63:773–778.Suche in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Selected paper from the 19th ISWFPC - International Symposium on Wood, Fibre and Pulping Chemistry, held in Porto Seguro, Brazil, August 30–September 1
- Modeling kraft cooking kinetics of fiber mixes from TMP and unbleached kraft pulps for assessment of old corrugated cardboard delignification
- Effect of autohydrolysis on alkaline delignification of mixed hardwood chips and on lignin structure
- Lignin-based coatings for controlled P-release fertilizer consisting of granulated simple superphosphate
- A matrix-resistant HPTLC method to quantify monosaccharides in wood-based lignocellulose biorefinery streams
- Review
- Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review
- Original Articles
- Influence of veneer thickness, mat formation and resin content on some properties of novel poplar scrimbers
- Low-velocity impact response of wood-strand sandwich panels and their components
- Interactions between PLA, PE and wood flour: effects of compatibilizing agents and ionic liquids
- Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique
- Boron fixation effect of quaternary ammonium compounds (QACs) on sodium fluoroborate (NaBF4)-treated wood
Artikel in diesem Heft
- Frontmatter
- Selected paper from the 19th ISWFPC - International Symposium on Wood, Fibre and Pulping Chemistry, held in Porto Seguro, Brazil, August 30–September 1
- Modeling kraft cooking kinetics of fiber mixes from TMP and unbleached kraft pulps for assessment of old corrugated cardboard delignification
- Effect of autohydrolysis on alkaline delignification of mixed hardwood chips and on lignin structure
- Lignin-based coatings for controlled P-release fertilizer consisting of granulated simple superphosphate
- A matrix-resistant HPTLC method to quantify monosaccharides in wood-based lignocellulose biorefinery streams
- Review
- Utilization and characterization of amino resins for the production of wood-based panels with emphasis on particleboards (PB) and medium density fibreboards (MDF). A review
- Original Articles
- Influence of veneer thickness, mat formation and resin content on some properties of novel poplar scrimbers
- Low-velocity impact response of wood-strand sandwich panels and their components
- Interactions between PLA, PE and wood flour: effects of compatibilizing agents and ionic liquids
- Industrial Thermowood® and Termovuoto thermal modification of two hardwoods from Mozambique
- Boron fixation effect of quaternary ammonium compounds (QACs) on sodium fluoroborate (NaBF4)-treated wood