Abstract
Isolation and analysis of lignin and lignin-carbohydrate complexes (LCCs) were performed to understand the better delignification ability of prehydrolysed wood chips. Lignin analysis showed that prehydrolysis led to a slight depolymerisation and an increase in free phenolic group content. The yield measurement and composition analysis of LCCs of mixed softwoods (SWs) and mixed hardwoods (HWs) revealed essential differences. In the case of SW, the amounts of lignin and xylan involved in LCCs were significantly lowered, whereas in the case of HW, less cellulose, glucomannans, and xylans were detectable in the residual LCCs. The molecular mass distributions of glucomannan-lignin and xylan-lignin fractions were not changed significantly.
Acknowledgments
The authors would like to thank Institut Carnot-Energie du Futur for the funding of this study and KTH for help in the method of isolation of LCCs.
References
Balakshin, M., Capanema, E., Berlin, A. (2014) Isolation and analysis of lignin-carbohydrate complexes (LCC) preparations with traditional and advanced methods: a review. In: Studies in Natural Products Chemistry. Elsevier, Amsterdam. pp. 83–115.10.1016/B978-0-444-63281-4.00004-5Suche in Google Scholar
Balakshin, M., Capanema, E., Chang, H., Jameel, H. (2013) Comprehensive Evaluation of Traditional and Modified Methods for Isolation of Lignin and LCC Preparations. 17th International Symposium on Wood, Fiber and Pulping Chemistry 17th International Symposium on Wood, Fiber and Pulping Chemistry, Vancouver.10.1080/02773813.2014.892993Suche in Google Scholar
Balakshin, M., Capanema, E., Gracz, H., Chang, H., Jameel, H. (2011) Quantification of lignin–carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233:1097–1110.10.1007/s00425-011-1359-2Suche in Google Scholar PubMed
Björkman, A. (1957) Studies on finely divided wood Part 3. Extraction of lignin-carbohydrate complexes with neutral solvents. Svensk. Papperstid. 60:243–251.Suche in Google Scholar
Bolker, H.I., Wang, P.Y. (1969) Acid-and alkali-labile bonds in lignin-carbohydrate complexes. Tappi 52:920–923.Suche in Google Scholar
Chirat, C., Boiron, L., Lachenal, D. (2011) Bleaching ability of pre-hydrolyzed pulps in the context of a biorefinery mill. In: Proc. Int. Pulp Bleach. Conf. International Pulp Bleaching Conference International Pulp Bleaching Conference, Tappi, Portland, USA, pp. 12–18.10.32964/TJ12.11.49Suche in Google Scholar
Chirat, C., Lachenal, D., Dufresne, A. (2010) Biorefinery in a kraft pulp mill: from bioethanol to cellulose nanocrystals. Cellul. Chem. Technol. 44:59–64.Suche in Google Scholar
Del Río, J.C., Prinsen, P., Cadena, E.M., Martínez, Á.T., Gutiérrez, A., Rencoret, J. (2016) Lignin–carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process. Planta 243:1143–1158.10.1007/s00425-016-2470-1Suche in Google Scholar PubMed
Dence, C.W., Lin, S.Y. (1992) Introduction. In: Methods of Lignin Chemistry. Springer-Verlag, Berlin Heidelberg, pp. 12–13.10.1007/978-3-642-74065-7Suche in Google Scholar
Du, X., Gellerstedt, G., Li, J. (2013) Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. Plant J. 74:328–338.10.1111/tpj.12124Suche in Google Scholar PubMed PubMed Central
Duarte, G.V., Ramarao, B.V., Amidon, T.E., Ferreira, P.T. (2011) Effect of Hot Water Extraction on Hardwood Kraft Pulp fibers (Acer saccharum, Sugar Maple). Ind. Eng. Chem. Res. 50:9949–9959.10.1021/ie200639uSuche in Google Scholar
Erdmann, J. (1866) Über die Concretionen in den Birnen. Justus Liebigs Ann. Chem. 138:1–19.10.1002/jlac.18661380102Suche in Google Scholar
Eriksson, O., Lindgren, B.O. (1977) About the linkage between lignin and hemicelluloses in wood. Svensk. Papperstid. 80:59–63.Suche in Google Scholar
Fengel, D., Wegener, G. Wood –Chemistry, Ultrastructure, Reactions. W. de Gruyter, Berlin New York, 1984.10.1515/9783110839654Suche in Google Scholar
Francis, R.C., Bolton, T.S., Abdoulmoumine, N., Lavrykova, N., Bose, S.K. (2008) Positive and negative aspects of soda/anthraquinone pulping of hardwoods. Bioresour. Technol. 99:8453–8457.10.1016/j.biortech.2008.02.055Suche in Google Scholar PubMed
Gellerstedt, G. (2008) Biorefinery solutions – The future of the forest based industry. In: Proc. Eur. Workshop Lignocellul. Pulp. European Workshop on Lignocellulosics and Pulp European Workshop on Lignocellulosics and Pulp, Stockholm, Sweden, pp. 1–4.Suche in Google Scholar
Gírio, F.M., Fonseca, C., Carvalheiro, F., Duarte, L.C., Marques, S., Bogel-Łukasik, R. (2010) Hemicelluloses for fuel ethanol: a review. Bioresour. Technol. Special Issue on Lignocellulosic Bioethanol: Current Status and Perspectives 101:4775–4800.10.1016/j.biortech.2010.01.088Suche in Google Scholar PubMed
Janson, J. (1970) Calculation of the polysaccharide composition of wood and pulp.Paperi ja Puu, 52:323–329.Suche in Google Scholar
Kämppi, R., Hörhammer, H., Leponiemi, A., van Heiningen, A. (2010) Pre-extraction and PSAQ pulping of Siberian larch. Nord. PulpPaper 25:243–248.10.3183/npprj-2010-25-02-p243-248Suche in Google Scholar
Kisonen, V., Prakobna, K., Xu, C., Salminen, A., Mikkonen, K., Valtakari, D., Eklund, P., Seppälä, J., Tenkanen, M., Willför, S. (2015) Composite films of nanofibrillated cellulose and O-acetyl galactoglucomannan (GGM) coated with succinic esters of GGM showing potential as barrier material in food packaging. J. Mater. Sci. 50:3189–3199.10.1007/s10853-015-8882-7Suche in Google Scholar
Koshijima, T., Watanabe, T. Association between Lignin and Carbohydrates in Wood and Other Plant Tissues. Springer, New York, 2003.10.1007/978-3-662-05191-7Suche in Google Scholar
Košíková, B., Joniak, D., Kosáková, L. (2009) On the Properties of Benzyl Ether Bonds in the Lignin-Saccharidic Complex Isolated from Spruce. Holzforschung 33:11–14.10.1515/hfsg.1979.33.1.11Suche in Google Scholar
Lawoko, M., Henriksson, G., Gellerstedt, G. (2006) Characterisation of lignin-carbohydrate complexes (LCCs) of spruce wood (Picea abies L.) isolated with two methods. Holzforschung 60:156–161.10.1515/HF.2006.025Suche in Google Scholar
Leschinsky, M., Zuckerstätter, G., Weber, H.K., Patt, R., Sixta, H. (2008) Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part 1: Comparison of different lignin fractions formed during water prehydrolysis. Holzforschung 62:645–652.10.1515/HF.2008.117Suche in Google Scholar
Meier, H., Nykänen, L., Norrby, A., Svennerholm, L., Ernster, L., Diczfalusy, E. (1958) Barium hydroxide as a selective precipitating agent for hemicelluloses. Acta Chem. Scand. 12:144–146.10.3891/acta.chem.scand.12-0144Suche in Google Scholar
Nimz, H.H., Tschirner, U., Stähle, M., Lehmann, R., Schlosser, M. (1984) Carbon-13 NMR spectra of lignins, 10.1 comparison of structural units in spruce and beech lignin. J. Wood Chem. Technol. 4:265–284.10.1080/02773818408070648Suche in Google Scholar
Nylander, F., Sunner, H., Olsson, L., Christakopoulos, P., Westman, G. (2016) Synthesis and enzymatic hydrolysis of a diaryl benzyl ester model of a lignin-carbohydrate complex (LCC). Holzforschung 70:385–391.10.1515/hf-2014-0347Suche in Google Scholar
Pepper, J.M., Baylis, P.E.T., Adler, E. (1959) The isolation and properties of lignins obtained by the acidolysis of spruce and aspen woods in dioxane–water Medium. Can. J. Chem. 37:1241–1248.10.1139/v59-183Suche in Google Scholar
Ragauskas, A.J., Nagy, M., Kim, D.H., Eckert, C.A., Hallett, J.P., Liotta, C.L. (2006) From wood to fuels: Integrating biofuels and pulp production. Ind. Biotechnol. 2:55–65.10.1089/ind.2006.2.55Suche in Google Scholar
Robert, D. (1992) Carbon-13 nuclear magnetic resonance spectrometry. In: Methods Lignin Chem. Eds. Lin, D.S.Y., Dence, P.E.D.C.W. Springer Berlin Heidelberg, pp. 250–273.10.1007/978-3-642-74065-7_18Suche in Google Scholar
Sixta, H. Handbook of Pulp. Wiley-VCH Verlag GmbH & Co., 2006.10.1002/9783527619887Suche in Google Scholar
Technical Association of the Pulp and Paper Industry. (n.d.) Tappi Standard (2011) T 222 Om-11. Acid-insoluble lignin in wood and pulp.Suche in Google Scholar
Theander, O., Westerlund, E.A. (1986) Studies on dietary fiber. 3. Improved procedures for analysis of dietary fiber. J. Agric. Food Chem. 34:330–336.10.1021/jf00068a045Suche in Google Scholar
Thring, R.W., Chornet, E., Bouchard, J., Vidal, P.F., Overend, R.P. (1991) Evidence for the heterogeneity of glycol lignin. Ind. Eng. Chem. Res. 30:232–240.10.1021/ie00049a036Suche in Google Scholar
Traynard, P., Ayroud, A.M., Eymery, A. (1953) Existence d´une liaison lignine-hydrates de carbone dans la bois. ATIP 45–52.Suche in Google Scholar
Tunc, M.S., van Heiningen, A.R.P. (2008) Hydrothermal dissolution of mixed southern hardwoods. Holzforschung 62:539–545.10.1515/HF.2008.100Suche in Google Scholar
Wallis, A.F.A. (1971) Solvolysis by acids and bases. In: Lignins Occurrence, Formation, Structure and Reaction. Eds. Sarkanen, K.V., Ludwig. C.H. Wiley-Interscience, New York (N.Y.). pp. 354–s359.Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Comparative analysis of the complete chloroplast genomic sequence and chemical components of Cinnamomum micranthum and Cinnamomum kanehirae
- Characterisation of lignin and lignin-carbohydrate complexes (LCCs) in prehydrolysed wood chips
- Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 1: color generation, dimensional stability, and fire retardancy
- Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 2: hygroscopicity, leaching resistance, and thermal stability
- Coating of wood by means of electrospun nanofibers based on PVA/SiO2 and its hydrophobization with octadecyltrichlorosilane (OTS)
- Characteristics and thermal decomposition kinetics of wood-SiO2 composites derived by the sol-gel process
- Premature failure of utility poles in Switzerland and Germany related to wood decay basidiomycetes
- Tannin-boron complex as a preservative for 3-ply beech plywoods designed for humid conditions
- Biodegradation of terpenes for emission-reduced oriented strand boards (OSB)
- Mathematical models and experimental data for HDF based sandwich panels with dual corrugated lightweight core
Artikel in diesem Heft
- Frontmatter
- Comparative analysis of the complete chloroplast genomic sequence and chemical components of Cinnamomum micranthum and Cinnamomum kanehirae
- Characterisation of lignin and lignin-carbohydrate complexes (LCCs) in prehydrolysed wood chips
- Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 1: color generation, dimensional stability, and fire retardancy
- Promotion effect of NP fire retardant pre-treatment on heat-treated poplar wood. Part 2: hygroscopicity, leaching resistance, and thermal stability
- Coating of wood by means of electrospun nanofibers based on PVA/SiO2 and its hydrophobization with octadecyltrichlorosilane (OTS)
- Characteristics and thermal decomposition kinetics of wood-SiO2 composites derived by the sol-gel process
- Premature failure of utility poles in Switzerland and Germany related to wood decay basidiomycetes
- Tannin-boron complex as a preservative for 3-ply beech plywoods designed for humid conditions
- Biodegradation of terpenes for emission-reduced oriented strand boards (OSB)
- Mathematical models and experimental data for HDF based sandwich panels with dual corrugated lightweight core