Home Anisotropic elastic properties of common ash (Fraxinus excelsior L.)
Article
Licensed
Unlicensed Requires Authentication

Anisotropic elastic properties of common ash (Fraxinus excelsior L.)

  • Sebastian Clauß , Corina Pescatore and Peter Niemz EMAIL logo
Published/Copyright: May 9, 2014
Become an author with De Gruyter Brill

Abstract

Hardwoods in principle show a similar orthotropic behavior as softwoods; however, the ratios of the mechanical parameters between the three anatomical directions and their magnitudes are different and depend strongly on the individual microstructure of the species. The aim of the current study was to characterize the 3-D elastic behavior of common ash (Fraxinus excelsior L.) by tensile, compression, and shear tests in the three anatomical directions and stepwise in between, by means of a universal testing machine in combination with a digital image correlation technique. Young’s moduli, shear moduli, and Poisson’s ratios have been determined for the different load directions. From studies on the radial-tangential plane of other wood species, it is known that the elastic moduli in the principal directions and the off-axis elastic moduli vary in a nonlinear correlation, depending on density gradients between earlywood and latewood. This angular dependency has been experimentally and theoretically proven for ash. Furthermore, the dependency of mechanical parameters on the fiber-load angle has been experimentally determined. The measurements for principal and off-axis load directions provide a sound basis for modeling of hardwood structures.


Corresponding author: Peter Niemz, Institute for Building Materials, ETH Zurich, Stefano-Franscini-Platz 3, CH-8093 Zurich, Tel.: (+41) 44-63-25230, Fax: (+41) 44-63-21174, e-mail:

Acknowledgments

The authors thank Mr. Thomas Schnider for his accurate preparation of the specimens and Dr. Stefan Hering for his support with the tensor trasformation algorithms.

References

Arcan, M., Hashin, Z., Voloshin, A. (1978) A method to produce uniform plane-stress states with applications to fiber-reinforced materials. Exp. Mech. 18:141–146.Search in Google Scholar

Baumann, R. (1922) Die bisherigen Ergebnisse der Holzprüfungen in der Materialprüfungsanstalt an der TH Stuttgart. Verlag des Vereins Deutscher Ingenieure, Berlin.Search in Google Scholar

Bodig, J., Jayne, A. Mechanics of Wood and Wood Composites. Krieger Publishing Company, 1993.Search in Google Scholar

Bonoli, C., Niemz, P., Mannes, D. (2005) Investigation into certain mechanical properties of ash. Schweizer Zeitschr. Forstwesen. 156:432–437.10.3188/szf.2005.0432Search in Google Scholar

Bucur, V. Acoustics of Wood. 2nd edn, Springer-Verlag, Berlin, Heidelberg, Germany, 2006.10.1007/3-540-30594-7Search in Google Scholar

DIN 68364 (2003) Properties of wood species – Density, modulus of elasticity and strength, Beuth-Verlag, Berlin.Search in Google Scholar

Garab, J., Keunecke, D., Hering, S., Szalai, J., Niemz, P. (2010) Measurement of standard and off-axis elastic moduli and Poisson’s ratios of spruce and yew wood in the transverse plane. Wood Sci. Technol. 44:451–464.10.1007/s00226-010-0362-2Search in Google Scholar

Grimsel, M. (1999) Mechanisches Verhalten von Holz: Struktur- und Parameteridentifikation eines anisotropen Werkstoffes. Dissertation, Dresden, p. 89.Search in Google Scholar

Goldenberg, N., Arcan, M., Nicolau, E. (1958) On the most suitable specimen shape for testing shear strength of plastics. International Symposium on Plastics Testing and Standardization, Am. Soc. Testing Mats. 247:115–121.Search in Google Scholar

Hearmon, R. The elasticity of wood and plywood. HM Stationery Office London, 1948.Search in Google Scholar

Hearmon, R.F., Barkas W.W. (1941) The effect of grain direction on the Young’s moduli and rigidity moduli of beech and Sitka spruce. Proc. Phys. Soc. 53:674–680.Search in Google Scholar

Hering, S., Keunecke, D., Niemz, P. (2012) Moisture-dependent orthotropic elasticity of beech wood. Wood Sci. Technol. 46:927–938.Search in Google Scholar

Hörig, H. (1933) Zur Elastizität des Fichtenholzes. 1. Folgerungen aus Messungen von H. Carrington an Spruce. Z. Tech. Phys. 12:369–379.Search in Google Scholar

Hung, S.C., Liechti, K.M. (1999) Finite element analysis of the arcan specimen for fiber reinforced composites under pure shear and biaxial loading. J. Compos. Mater. 33:1288–1317.Search in Google Scholar

Iosipescu, N. (1967) New accurate procedure for single shear testing of metals. J. Mater. 2:537–566.Search in Google Scholar

Kabir, M.F., Sidek, H.A., Daud, W.M., Khalid, K. (1997) Effect of moisture content and grain angle on the ultrasonic properties of rubber wood. Holzforschung. 51:263–267.10.1515/hfsg.1997.51.3.263Search in Google Scholar

Kennedy, R.W. (1968) Wood in transverse compression. For. Prod. J. 18:36–40.Search in Google Scholar

Keunecke, D., Hering, S., Niemz, P. (2008) Three-dimensional elastic behaviour of common yew and Norway spruce. Wood Sci. Technol. 42:633–647.Search in Google Scholar

Kollmann, F. Die Esche und ihr Holz. Verlag Julius Springer, Berlin, 1941.10.1007/978-3-642-90915-3Search in Google Scholar

Kollmann, F. Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin, 1951.Search in Google Scholar

Kühne, H. Untersuchung über einige Eigenschaften des Eschen- und Robinienholzes im Hinblick auf dessen Verwendbarkeit für Werkzeugstiele. Forschungsbericht Empa, 1951.Search in Google Scholar

Lang, E.M., Bejo, L., Szalai, J., Kovacs, S., Anderson, R.B. (2002) Orthotropic strength and elasticity of hardwoods in relation to composite manufacture. Part II. Orthotropy of compression strength and elasticity. Wood Fiber Sci. 34:350–365.Search in Google Scholar

Leclerco, A. (1975) La qualité du bois de frêne. Bull. rech. Agron. Gembloux. 10:497–526.Search in Google Scholar

Liu, J.Y. (2002) Analysis of off-axis tension test of wood specimens. Wood Fiber Sci. 34:205–211.Search in Google Scholar

Neuhaus, F.H. (1983) Über das elastische Verhalten von Fichtenholz in Abhängigkeit von der Holzfeuchtigkeit. Holz Roh. Werkst. 41:21–25.10.1007/BF02608449Search in Google Scholar

Niemz, P. Physik des Holzes und der Holzwerkstoffe. DRW-Verlag, Leinfelden-Echterdingen, 1993.Search in Google Scholar

Ozyhar, T., Hering, S., Niemz, P. (2012) Moisture-dependent elastic and strength anisotropy of European beech wood in tension. J. Mater. Sci. 47:6141–6150.Search in Google Scholar

Pozgaj, A., Chovanec, D., Kurjatko, S., Babiak, M. (1997) Struktura a vlastnosti drevna. Priroda. Bratislava.Search in Google Scholar

Reiterer, A., Stanzl-Tschegg, S.E. (2001) Compressive behaviour of softwood under uniaxial loading at different orientations to the grain. Mech. Mater. 33:705–715.Search in Google Scholar

Sell, J. Eigenschaften und Kenngrössen von Holzarten. Baufachverlag, Dietikon, 1997.Search in Google Scholar

Sliker, A., Yu, Y. (1993) Elastic constants for hardwoods measured from plate and tension tests. Wood Fiber Sci. 25:8–22.Search in Google Scholar

Stamer, J. (1935) Elastizitätsuntersuchungen an Hölzern. Archive of Applied Mechanics. 1:1–8.Search in Google Scholar

Suzuki, H., Sasaki, E. (1990) Effect of grain angle on the ultrasonic velocity of wood. Mokuzai Gakkaishi 36:103–107.Search in Google Scholar

Szalai, J. Anisotropic behaviour of wood and wood based materials (in Hungarian). Hillebrand Nyomda Kft., Sopron, 1994.Search in Google Scholar

Voigt, W. Lehrbuch der Kristallphysik. B.G. Teubner, Leipzig, 1928.Search in Google Scholar

Wagenführ, R. Holzatlas. Fachbuchverlag, 4th edn, Leipzig, 1996.Search in Google Scholar

Wommelsdorf, O. Dehnungs- und Querdehnungszahlen von Hölzern. Dissertation, Technische Hochschule Hannover, 1966.Search in Google Scholar

Xavier, J., Oliveira, M., Morais, J., Pinto, T. (2009) Measurement of the shear properties of clear wood by the Arcan test. Holzforschung 63:217–225.10.1515/HF.2009.034Search in Google Scholar

Yoshihara, H. (2009) Prediction of the off-axis stress strain relation of wood under compression loading. Eur. J. Wood Prod. 67:183–188.10.1007/s00107-009-0320-6Search in Google Scholar

Received: 2013-9-29
Accepted: 2014-3-24
Published Online: 2014-5-9
Published in Print: 2014-12-1

©2014 by De Gruyter

Articles in the same Issue

  1. Frontmatter
  2. Original Articles
  3. Influence of cellulose supramolecular structure on strength properties of chemical pulp
  4. Morphological, mechanical, and optical properties of cypress papers
  5. Determination of ion exchange constants for pairs of metal ions to lignocellulosic materials by column chromatography
  6. Combustion behavior of oak wood (Quercus mongolica L.) modified by 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU)
  7. Synthesis and antifungal activity of camphoric acid-based acylhydrazone compounds
  8. Lignification of ray parenchyma cells in the xylem of Pinus densiflora. Part I: Microscopic investigation by POM, UV microscopy, and TOF-SIMS
  9. Lignification of ray parenchyma cells in the xylem of Pinus densiflora. Part II: Microchemical analysis by laser microdissection and thioacidolysis
  10. Distribution of lignin in vascular bundles of coconut wood (Cocos nucifera) by cellular UV-spectroscopy and relationship between lignification and tensile strength in single vascular bundles
  11. Compression properties of vascular boundles and parenchyma of rattan (Plectocomia assamica Griff)
  12. Properties of wood-plastic composites (WPCs) reinforced with extracted and delignified wood flour
  13. Anisotropic elastic properties of common ash (Fraxinus excelsior L.)
  14. Destructive and non-destructive evaluation of seven hardwoods and analysis of data correlation
  15. Experimental validation of green wood peeling assisted by IR heating – some considerations of the analytical system design
  16. The influence of felling season and log-soaking temperature on the wetting and phenol formaldehyde adhesive bonding characteristics of birch veneer
  17. Comparative evaluation of various lignin determination methods on hemicellulose-rich fractions of spruce and birch obtained by pressurized hot-water extraction (PHWE) and subsequent ultrafiltration (UF)
  18. Conversion between basic density and apparent density at any moisture content in Eucalyptus grandis
  19. Postpeak residual capacity of nailed connections of a shear wall
  20. Obituary
  21. Memorial on Horst H. Nimz (1930–2013)
Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/hf-2013-0189/html
Scroll to top button