Startseite Design, synthesis and anticancer activity evaluation of aziridine-1,2,3-triazole hybrid derivatives
Artikel Open Access

Design, synthesis and anticancer activity evaluation of aziridine-1,2,3-triazole hybrid derivatives

  • Hong-Ru Dong EMAIL logo und Jian-Guo Wu
Veröffentlicht/Copyright: 30. März 2018

Abstract

New 1-aryl-4-[(aziridine-1-yl)diarylmethyl]-5-methyl-1H-1,2,3-triazole derivatives 7a–i were synthesized by a one-pot reaction of diaryl-(1-aryl-5-methyl-1H-1,2,3-triazol-4-yl)methanols 6a–i derived from 1-aryl-5-methyl-1H-1,2,3-triazole-4-carboxylic acids 4a–c. Structures of compounds 7a–i were confirmed by analysis of proton nuclear magnetic resonance (1H NMR) and carbon-13 nuclear magnetic resonance (13C NMR), mass spectrometry (MS) and infrared (IR) data. The structure of compound 7f was studied by X-ray diffraction analysis. The anticancer activities of compounds 7a–i against human leukemia HL-60 cells and human hepatoma G2 cells were evaluated. Some of the compounds are highly active.

Introduction

A vast majority of biologically important molecules are heterocyclic compounds [1], [2], [3]. The biological properties of aziridine-containing compounds such as azicemicins [4], miraziridine [5], [6], azinomycins [7], ficellomycin [8], FR-900482 [9] and mitomycins [10] are of significant interest (Figure 1). In particular, mitomycin C has a broad activity against a range of tumors and has been applied clinically since the 1960s. 1,2,3-Triazoles are also pharmacologically important molecules that show anticancer [11], [12], [13], antibacterial [14], [15], antifungal [16], antiviral [17], anti-inflammatory and analgesic activities [18] (Figure 2). However, there is little information describing compounds containing aziridine and 1,2,3-triazole moieties in one molecule. Such compounds are the subject of this report.

Figure 1 Fused aziridine-containing natural products.
Figure 1

Fused aziridine-containing natural products.

Figure 2 Anticancer compounds containing 1,2,3-triazole.
Figure 2

Anticancer compounds containing 1,2,3-triazole.

Results and discussion

1-Aryl-4-[(aziridin-1-yl)diaryl-methyl]-5-methyl-1H-1,2,3-triazoles 7a–i were synthesized from diaryl-1H-1,2,3-triazol-4-yl)methanols 6a–i. The synthetic route is shown in Scheme 1. Details of the synthesis of compounds 6a–i starting with anilines 1 through intermediaries 4 and 5 were described in our previous report [19]. Structures of products 7a–i were deduced by spectral methods. In particular, a strong absorption at 3320–3520 cm−1 for a hydroxy group, observed in the infrared (IR) spectra of substrates 6a–i, is absent in the IR spectra of products 7a–i. The proton nuclear magnetic resonance (1H NMR) spectra of compounds 7a–i show signals of the aziridine protons at δ 1.80–1.88 and δ 1.15–1.33, as expected. The structure of compound 7f was additionally determined by X-ray diffraction analysis (Figure 3). Compound 7f (CCDC deposit No 775599), C25H24N4, MW 380.48, crystallizes in the triclinic space group P1̅ with unit cell parameters a=9.3100(7), b=13.8263(11), c=17.4605(15) Å, α=107.402(4), β=92.607(4), γ=92.829(4)°, V=2137.8(3) Å3, Z=4, Dx=1.182 mg/cm3. The final R value was 0.0558.

Scheme 1
Scheme 1
Figure 3 View of the molecular structure of 7f (CCDC, 2005).
Figure 3

View of the molecular structure of 7f (CCDC, 2005).

Conclusions

New 1-aryl-4-[(aziridin-1-yl)diaryl-methyl]-5-methyl-1H-1,2,3-triazoles 7a–i were synthesized and their anticancer activities were evaluated. The anticancer activity was investigated under our previously reported conditions [20], [21] using the MTT assay. Compounds 7b,c and 7i are highly active against human leukemia cells and compounds 7c,d, 7f,g inhibit human hepatoma G2 cells.

Experimental

1H NMR spectra were obtained in deuterated chloroform (CDCl3) at 300 MHz. Starting materials 4–6 were synthesized as previously reported [19].

Synthesis of compounds 7a–i

Dry hydrogen chloride was bubbled through a hot solution of compounds 6a–i (0.04 mol) in benzene (20 mL) in a 50-mL flask equipped with an automatic water separator, a reflux condenser and a calcium chloride guard-tube. After 1 h, the solution was concentrated to 10 mL and treated with aziridine (0.06 mol) with rapid stirring followed by the addition of triethylamine (0.08 mol). After the mixture was stirred at 45°C for an additional 1 h, the solvent was evaporated and the residue was crystallized from ethyl acetate or purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether.

4-[(Aziridin-1-yl)-bis(4-chlorophenyl)methyl]-5-methyl-1-(4-chlorophenyl)-1H-1,2,3-triazole (7a)

White flakes; yield 86%; mp 90–92°C; 1H NMR: δ 7.52 (d, 1H, J=3 Hz), 7.50 (d, 1H, J=3 Hz), 7.48 (d, 2H, J=3 Hz), 7.45 (d, 2H, J=3 Hz), 7.40 (d, 1H, J=3.6 Hz), 7.37 (d, 1H, J=3Hz), 7.29 (d, 2H, J=3 Hz), 7.26 (d, 2H, J=3.6 Hz), 2.10 (s, 3H), 1.81 (s, 2H), 1.15 (s, 2H); 13C NMR (CDCl3-d1), δ 145.7, 141.6, 135.6, 134.7, 133.1, 132.9, 130.4, 129.6, 127.8, 126.8, 69.3, 21.7, 10.6; MS: m/z 468 (M+, 0.39), 428 (6), 426 (6), 154 (32), 152 (100); IR: 3425, 3061, 2987, 2926, 2844, 1734, 1496, 1442, 1422, 1400, 1264, 1117, 1092, 1010, 922, 867, 829, 818 cm−1. HRMS (ESI). Calcd for C24H19Cl3N4, [M+H]+: m/z 469.0748. Found: m/z 469.0755.

4-[(Aziridin-1-yl)-bis(3-chlorophenyl)methyl]-5-methyl-1-(4-chlorophenyl)-1H-1,2,3-triazole (7b)

White flakes; yield 65%; mp 96–98°C; 1H NMR: δ 7.61 (s, 2H), 7.52 (q, 2H, J=2.4 Hz), 7.38 (m, 4H), 7.23 (m, 4H), 2.04 (s, 3H), 1.84 (d, 2H, J=2Hz), 1.17 (d, 2H, J=2 Hz); 13C NMR (CDCl3-d1), δ 145.3, 144.8, 135.6, 134.7, 133.7, 133.2, 129.6, 128.9, 128.8, 127.4, 127.3, 126.8, 69.5, 21.8, 10.6; MS: m/z 468 (M+, 0.71), 428 (5), 154 (27), 152 (100), 111 (29), 75 (12); IR: 3449, 3088, 3063, 2990, 2931, 2869, 1734, 1590, 1572, 1496, 1469, 1422, 1368, 1256, 1202, 1148, 1120, 1091, 1049, 1006, 978, 940, 893, 875, 845, 785, 753, 728, 699, 681 cm−1; HRMS (ESI). Calcd for C24H19Cl3N4, [M+H]+: m/z 469.0748. Found: m/z 469.0751.

4-[(Aziridin-1-yl)diphenylmethyl]-5-methyl-1-(4-chlorophenyl)-1H-1,2,3-triazole (7c)

White needles; yield 90%; mp 92–94°C; 1H NMR: δ 7.50 (m, 6H), 7.50 (m, 2H ), 7.26 (m, 6H), 2.08 (s, 3H), 1.80 (s, 2H), 1.19 (d, 2H, J=2 Hz); 13C NMR (CDCl3-d1), δ 146.6, 143.3, 135.3, 134.9, 132.8, 129.5, 129.2, 127.4, 126.8, 126.7, 69.9, 21.7, 10.5; MS: m/z 400 (M+, 1.2), 358 (11), 178 (5), 154 (32) 152 (100), 11 (26), 77 (8), 75 (11), 51 (5), 43 (7); IR: 3459, 3088, 3059, 2987, 2928, 1738, 1594, 1495, 1445, 1422, 1402, 1371, 1262, 1235, 1202, 1177, 1120, 1090, 1042, 1004, 938, 902, 848, 821, 765, 744, 700, 639 cm−1. HRMS (ESI). Calcd for C24H21ClN4, [M+H]+: m/z 401.1528. Found: m/z 401.1532.

4-[(Aziridin-1-yl)-bis(4-chlorophenyl)methyl]-5-methyl-1-p-tolyl-1H-1,2,3-triazole (7d)

White flakes; yield 89%; mp 86–88°C; 1H NMR: δ 7.48 (m, 4H), 7.28 (m, 8H), 2.43 (s, 3H), 2.00 (s, 3H), 1.80 (d, 2H, J=2 Hz), 1.15 (d, 2H, J=2 Hz); 13C NMR (CDCl3-d1), δ 144.8, 142.1, 139.6, 133.7, 133.1, 132.8, 130.3, 129.9, 127.8, 125.4, 69.2, 21.7, 21.1, 10.5; MS: m/z 448 (M+, 0.52), 406 (8), 152 (22), 133 (11), 132 (100), 125 (7), 111 (12), 97 (8), 91 (11), 83 (12), 74 (11), 55 (15); IR: 3429, 3060, 2987, 2923, 2856, 1517, 1486, 1443, 1421, 1400, 1264, 1205, 1180, 1094, 1011, 923, 867, 819, 559 cm−1. HRMS (ESI). Calcd for C25H22Cl2N4, [M+H]+: m/z 449.1294. Found: m/z 449.1299.

4-[(Aziridin-1-yl)-bis(3-chlorophenyl)methyl]-5-methyl-1-p-tolyl-1H-1,2,3-triazole (7e)

White needles; yield 82%; mp 103–105°C; 1H NMR: δ 7.65 (s, 2H), 7.42 (m, 2H), 7.30 (s, 4H), 7.22 (m, 4H), 2.42 (s, 3H), 1.95 (s, 3H), 1.85 (d, 2H, J=2 Hz), 1.18 (d, 2H, J=2 Hz); 13C NMR (CDCl3-d1), δ 145.8, 143.8, 139.7, 133.8, 133.7, 133.3, 129.9, 128.9, 128.7, 127.3, 127.2, 125.4, 69.4, 21.8, 21.2, 10.6; MS: m/z 448 (M+, 0.54), 406 (5), 133 (10), 132 (100), 91 (30), 65 (13); IR: 3449, 3062, 2990, 2923, 2865, 1735, 1590, 1571, 1515, 1469, 1420, 1368, 1256, 1235, 1203, 1179, 1147, 1121, 1102, 1078, 1048, 1010, 939, 883, 826, 785, 754, 729, 698, 682 cm−1; HRMS (ESI). Calcd for C25H22Cl2N4, [M+H]+: m/z 449.1294. Found: m/z 449.1301.

4-[(Aziridin-1-yl)-diphenylmethyl]-5-methyl-1-p-tolyl-1H-1,2,3-triazole (7f)

White needles; yield 91%; mp 151–152°C; 1H NMR: δ 7.57 (m, 4H), 7.37 (m, 10H), 2.42 (s, 3H), 1.98(s, 3H), 1.82 (d, 2H, J=2 Hz), 1.22 (d, 2H, J=2 Hz); 13C NMR (CDCl3-d1), δ 145.7, 143.8, 139.4, 133.9, 132.9, 129.8, 129.1, 127.4, 126.8, 125.5, 69.9, 21.8, 21.2, 10.5; MS: m/z 380 (M+, 1.0), 33 (13), 178 (6), 133 (10), 132 (100), 91 (34), 77 (6), 65 (14); IR: 3430, 3055, 3021, 2983, 2926, 2864, 1594, 1516, 1488, 1444, 1420, 1387, 1259, 1208, 1181, 1120, 1104, 1031, 1006, 987, 935, 898, 859, 838, 818, 798, 767, 748, 700, 662, 640, 553, 529 cm−1. HRMS (ESI). Calcd for C24H24N4, [M+H]+: m/z 381.2074. Found: m/z 381.2079.

4-[(Aziridin-1-yl)-bis(4-chlorophenyl)methyl]-5-methyl-1-phenyl-1H-1,2,3-triazole (7g)

White flakes; yield 90%; mp 83–85°C; 1H NMR: δ 7.52 (m, 5H), 7.47 (m, 2H), 7.42 (m, 2H), 7.29 (m, 2H), 7.26 (s, 2H), 2.05 (s, 3H), 1.82 (d, 2H, J=3 Hz), 1.16 (d, 2H, J=3 Hz); 13C NMR (CDCl3-d1), δ 145.1, 141.9, 136.2, 133.0, 132.9, 130.4, 129.5, 129.4, 127.8, 125.6, 69.3, 21.7, 10.6; MS: m/z 434 (M+, 0.7), 394 (5), 392 (9), 332 (11), 129 (11), 119 (11), 118 (100), 104 (10), 91 (13), 77 (21), 57 (11); IR: 3429, 3060, 2987, 2955, 2924, 2854, 1595, 1485, 1416, 1398, 1264, 1113, 1092, 1072, 1011, 921, 867, 817, 763, 694, 565, 531 cm−1. HRMS (ESI). Calcd for C24H20Cl2N4, [M+H]+: m/z 435.1138. Found: m/z 435.1144.

4-[(Aziridin-1-yl)-bis(3-chlorophenyl)methyl]-5-methyl-1-phenyl-1H-1,2,3-triazole (7h)

White flakes; yield 40%; mp 141–143°C; 1H NMR: δ 7.65 (s, 2H), 7.52 (m, 3H), 7.40 (m, 4H), 7.23 (m, 4H), 1.99 (s, 3H), 1.85 (t, 2H, J=2 Hz), 1.19 (t, 2H, J=2 Hz); 13C NMR (CDCl3-d1), δ 145.7, 144.1, 136.2, 133.8, 133.3, 129.5, 129.4, 128.9, 128.7, 127.3, 127.2, 125.6, 69.4, 21.8, 10.5; MS: m/z 434 (M+, 0.3), 176 (5), 118 (100), 77 (69), 5 1 (16); IR: 3429, 3058, 2985, 2926, 2844, 1592, 1571, 1501, 1471, 1265, 1119, 1144, 1120, 1100, 1015, 976, 940, 893, 813, 784, 761, 747, 713, 695 cm−1. HRMS (ESI). Calcd for C24H20Cl2N4, [M+H]+: m/z 435.1138. Found: m/z 435.1145.

4-[(Aziridin-1-yl)-diphenylmethyl]-5-methyl-1-phenyl-1H-1,2,3-triazole (7i)

White needles; yield 89%; mp 203–206°C; 1H NMR: δ 7.56 (m, 4H), 7.51 (m, 3H), 7.43 (m, 2H), 7.26 (m, 6H), 2.03 (s, 3H), 1.81 (s, 2H), 1.21 (s, 2H); 13C NMR (CDCl3-d1), δ 145.9, 143.6, 136.4, 132.9, 129.3, 129.1, 127.4, 126.8, 125.6, 69.9, 21.7, 10.5; MS: m/z 366 (M+, 0.4), 324 (8), 178 (5), 119 (8), 118 (100), 77 (46); IR: 3424, 3070, 3051, 3022, 2988, 2925, 2890, 1594, 1496, 1444, 1416, 1387, 1261, 1207, 1077, 1033, 993, 937, 903, 854, 767, 747, 697, 646, 561 cm−1. HRMS (ESI). Calcd for C24H22N4, [M+H]+: m/z 367.1917. Found: m/z 367.1924.

Biological evaluation

The effects of the synthesized compounds on cell viability were investigated under previously reported conditions with human leukemia cells and human hepatoma G2 cells [20], [21] using the MTT assay.

Acknowledgments

The authors wish to acknowledge the funding support by the Education Department of Gansu Province (grant 2016B-124) and by the Lanzhou University of Arts and Science (grant 2015GSP05).

References

[1] Dong, H. R.; Chen, Z. B.; Li, R. S.; Dong, H. S.; Xie, Z. X. Convenient and efficient synthesis of disubstituted piperazine derivatives by catalyst-free, atom-economical and tricomponent domino reactions. RSC Adv.2015, 5, 10768–10772.10.1039/C4RA14811HSuche in Google Scholar

[2] Nguyen, M. H.; Imanishi, M.; Kurogi, T.; Smith, A. B. Total synthesis of (−)-mandelalide a exploiting anion relay chemistry (ARC): identification of a type II ARC/CuCN cross-coupling protocol. J. Am. Chem. Soc.2016, 138, 3675–3678.10.1021/jacs.6b01731Suche in Google Scholar PubMed PubMed Central

[3] Jamookeeah, C. E.; Beadle, C. D.; Harrity, J. P. A. An enantiospecific approach to triazolylalanine derivatives. Synthesis2009, 2009, 133–137.10.1055/s-0028-1083270Suche in Google Scholar

[4] Watson, I. D. G.; Yudin, A. K. Ring-opening reactions of nonactivated aziridines catalyzed by tris(pentafluorophenyl)borane. J. Org. Chem.2003, 68, 5160–5167.10.1021/jo0343578Suche in Google Scholar PubMed

[5] Nakao, Y.; Fusetani, N. Enzyme inhibitors from marine invertebrates. J. Nat. Prod.2007, 70, 689–710.10.1007/978-90-481-3834-0_23Suche in Google Scholar

[6] Plaza, A.; Gustchina, E.; Baker, H. L.; Kelly, M.; Bewley, C. A. Mirabamides A–D, depsipeptides from the sponge Siliquariaspongia mirabilis that inhibit HIV-1 fusion. J. Nat. Prod.2007, 70, 1753–1760.10.1021/np070306kSuche in Google Scholar PubMed

[7] Sharma, V.; Kelly, G. T.; Foulke-Abel, J.; Watanabe, C. M. H. Aminoacetone as the penultimate precursor to the antitumor agent azinomycin A. Org. Lett.2009, 11, 4006–4009.10.1021/ol9016639Suche in Google Scholar PubMed

[8] Han, H.; Park, S. B.; Kim, S. K.; Chang, S. Copper − nitrenoid formation and transfer in catalytic olefin aziridination utilizing chelating 2-pyridylsulfonyl moieties. J. Org. Chem.2008, 73, 2862–2870.10.1021/jo800134jSuche in Google Scholar PubMed

[9] Judd, T. C.; Williams, R. M. A Concise total synthesis of (+)-FR900482 and (+)-FR66979. J. Org. Chem.2004, 69, 2825–2830.10.1021/jo035828tSuche in Google Scholar PubMed

[10] Galm, U.; Hager, M. H.; Van Lanen, S. G.; Ju, J.; Thorson, J. S.; Shen, B. Antitumor antibiotics: bleomycin, enediynes and mitomycin. Chem. Rev.2005, 105, 739–758.10.1021/cr030117gSuche in Google Scholar PubMed

[11] Zheng, Y. C.; Duan, Y. C.; Ma, J. L. Triazole–dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J. Med. Chem.2014, 56, 8543–8560.10.1021/jm401002rSuche in Google Scholar PubMed PubMed Central

[12] Zhang, W. J.; Li, Z.; Zhou, M.; Wu, F.; Hou, X. Y.; Luo, H.; Liu, H.; Han, X.; Yan, G. Y.; Ding, Z. Y.; et al. Synthesis and biological evaluation of 4-(1,2,3-triazol-1-yl)coumarin derivatives as potential antitumor agents. Bioorg. Med. Chem. Lett.2014, 24, 799–807.10.1016/j.bmcl.2013.12.095Suche in Google Scholar PubMed

[13] Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh, K. G.; Poornachandra, Y.; Ganesh, K. C.; Vasamsetti, S. B.; Kotamraju, S.; Narsaiah, B. Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur. J. Med. Chem. 2014, 80, 184–191.10.1016/j.ejmech.2014.04.052Suche in Google Scholar PubMed

[14] Reck, F.; Zhou, F.; Girardot, M.; Kern, G.; Eyermann, C. J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. Identification of 4-substituted 1,2,3-triazoles as novel oxazolidinone antibacterial agents with reduced activity against monoamine oxidase A. J. Med. Chem.2005, 48, 499–506.10.1021/jm0400810Suche in Google Scholar PubMed

[15] Liang, C. H.; Yao, S.; Chiu, Y. H.; Leung, P. Y.; Robert, N.; Seddon, J.; Sears, P.; Hwang, C. K.; Ichikawa, Y.; Romero, T. Synthesis and biological activity of new 5-O-sugar modified ketolide and 2-fluoro-ketolide antibiotics. Bioorg. Med. Chem. Lett.2005, 15, 1307–1310.10.1016/j.bmcl.2005.01.027Suche in Google Scholar PubMed

[16] Chen, H.; Taylor, J. L.; Abrams, S. R. Design and synthesis of β-methoxyacrylate analogues via click chemistry and biological evaluations. Bioorg. Med. Chem. Lett.2007, 17, 1979–1983.10.1016/j.bmcl.2007.01.021Suche in Google Scholar PubMed

[17] Maurya, S. K.; Gollapalli, D. R.; Kirubakaran, S.; Zhang, M. J.; Johnson, C. R.; Benjamin, N. N.; Hedstrom, L.; Cuny, G. D. Triazole inhibitors of cryptosporidium parvum inosine 5′-monophosphate dehydrogenase. J. Med. Chem.2009, 52, 4623–4630.10.1021/jm900410uSuche in Google Scholar PubMed PubMed Central

[18] Youcef, R. T.; Santos, M. D.; Roussel, S.; Baltaze, J.; Lubin-Germain, N.; Uziel, J. Huisgen cycloaddition reaction of C-alkynyl ribosides under micellar catalysis: synthesis of ribavirin analogues. J. Org. Chem.2009, 74, 4318–4323.10.1021/jo900594xSuche in Google Scholar PubMed

[19] Dong, H. S.; Huo, G. Y.; Ma, Z. T. The synthesis of some new (1-aryl-5-methyl-1H-1,2,3-triazol-4-yl) diarylmethanol. Indian J. Chem. Sect B2008, 47, 171–174.10.1002/chin.200817127Suche in Google Scholar

[20] Wang, H.; Gao, H. H.; Wang, Q.; Gao, Q. X.; Lin, C. J. Special anticancer activity of a new bisalolane sesquiterpene against human leukemia cells in vitro via inducing differentiate. Pharmazie2007, 62, 699–704.Suche in Google Scholar

[21] Iyengar, B. S.; Dorr, R. T.; Remers, W. A. Chemical basis for the biological activity of imexon and related cyanoaziridines. J. Med. Chem.2004, 47, 218–223.10.1021/jm030225vSuche in Google Scholar PubMed

Received: 2017-8-1
Accepted: 2017-12-19
Published Online: 2018-3-30
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/hc-2017-0144/html?lang=de
Button zum nach oben scrollen