Home Physical Sciences Efficient three-component synthesis of 5-(6-hydroxy-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-5,12-dihydrobenzo[b]pyrimido[5,4-g][1,8]naphthyridine-2,4(1H,3H)-dione
Article Open Access

Efficient three-component synthesis of 5-(6-hydroxy-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-5,12-dihydrobenzo[b]pyrimido[5,4-g][1,8]naphthyridine-2,4(1H,3H)-dione

  • Ali Reza Molla Ebrahimlo EMAIL logo
Published/Copyright: February 21, 2018

Abstract

1,8-Naphthyridine derivatives are important heterocyclic compounds. A facile and efficient one-pot procedure for the synthesis of 5-(6-hydroxy-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-5,12-dihydrobenzo[b]pyrimido[5,4-g][1,8]naphthyridine-2,4 (1H,3H)-dione (3) via a three-component reaction of barbituric acid, 2-chloro-3-formylquinoline and ammonia under basic conditions is described.

1,8-Naphthyridine derivatives show a broad range of interesting physiological activities including anti-inflammatory [1], analgesic [2], antiaggressive [3], anticancer [4], antibacterial [5], antitumor [6], antihypertensive [7] and antiallergic [8] properties. Several synthetic routes to this class of compounds have been reported [9], [10], [11], [12], [13], [14]. Interesting procedures involve one-pot condensations [15], [16], [17]. Here, we report the synthesis of a new 1,8-naphthyridine derivative 3 by a one-pot three-component reaction of barbituric acid, ammonia and 2-chloro-3-formylquinoline (Scheme 1).

Scheme 1
Scheme 1

The proposed mechanism is shown in Scheme 2. The first step involves the attack of the enol form of barbituric acid (1) on 2-chloro-3-formyl quinoline (2) to form the corresponding intermediate product 4 by the loss of a molecule of water. A subsequent addition of 4 with a second molecule of barbituric acid (1) in its enol form generates the intermediate product 5, the final reaction of which with ammonia yields the observed product 3 following the loss of H2O and HCl molecules.

Scheme 2
Scheme 2

In conclusion, a simple and efficient method for the synthesis of a benzo[b][1,8]naphthyridine derivative by a three-component reaction of 2-chloro-3-formylquinoline, barbituric acid and ammonia was developed. Currently, we are studying the scope and limitations of this new reaction using analogues of barbituric acid.

Experimental

5-(6-Hydroxy-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-5,12-dihydrobenzo[b]pyrimido [5,4-g][1,8]naphthyridine-2,4(1H,3H)-dione (3)

A mixture of barbituric acid (256 mg, 2 mmol) and aqueous ammonia (35%, 5 mL) was stirred at room temperature for 15 min, then treated with 2-chloro-3-formylquinoline (191.5 mg, 1 mmol) and heated under reflux for an additional 50 min. After cooling to room temperature, the resulting precipitate was collected to give 3 as a creamy solid: yield 333 mg (85%); mp 280°C (decomp.); proton nuclear magnetic resonance (1H NMR) (DMSO-d6, 300 MHz): δ 3.37 (1H, br s, NH), 5.19 (1H, s), 7.41 (1H, t, J=8.2 Hz), 7.5 (2H, br s, NH), 7.60 (1H, t, J=8.2 Hz), 7.73 (1H, d, J=8.4 Hz), 7.84 (1H, d, J=8.4 Hz), 8.09 (1H, s), 9.14 (2H, br s, NH), 10.82 (1H, br s, OH); carbon-13 nuclear magnetic resonance (13C NMR) (DMSO-d6, 75 MHz): δ 27.7; 88.8; 93.4; 125.2; 125.7; 127.5; 127.7; 127.9; 129.8; 137.4; 144.6; 150.3; 152.6; 154.7; 155.2; 163.7; 163.9; Fourier-transform infrared spectroscopy (FT-IR) (KBr): ν 3432; 3218; 3018; 2855; 1685; 1648; 1493; 1350; 1270; 1101; 757 cm-1; electron ionization mass spectrometry (EI-MS): m/z 392 (5, M+), 313 (8), 181 (29), 83 (42), 69 (60), 57 (97), 43 (100%). Anal. Calcd for C18H12N6O5: C, 55.11; H, 3.08; N, 21.95. Found: C, 55.24; H, 3.17; N, 22.34.

References

[1] Ivanov, A. S.; Tugusheva, N. Z.; Granik, V. G. Benzo[b]naphthyridines. Russ. Chem. Rev.2005, 74, 915–936.10.1070/RC2005v074n10ABEH001196Search in Google Scholar

[2] Roma, G.; Braccio, M. D.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-substituted N,N-dialkyl-5-(alkylamino or cycloalkylamino)[1,2,4]triazolo[4,3-a][1, 8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem.2000, 35, 1021–1035.10.1016/S0223-5234(00)01175-2Search in Google Scholar

[3] Atanasova, M.; Ilieva, S.; Galabov, B. QSAR analysis of 1,4-dihydro-4-oxo-1-(2-thiazolyl)-1,8-naphthyridines with anticancer activity. Eur. J. Med. Chem.2007, 42, 1184–1192.10.1016/j.ejmech.2007.01.029Search in Google Scholar

[4] Kuramoto, Y.; Ohshita, Y.; Yoshida, J.; Yazaki, A.; Shiro, M.; Koike,T. A novel antibacterial 8-chloroquinolone with a distorted orientation of the N1-(5-amino-2,4-difluorophenyl) group. J. Med. Chem.2003, 46, 1905–1917.10.1021/jm0205090Search in Google Scholar

[5] Chen, K.; Kuo, S. C.; Hsieh, M. C.; Mauger, A.; Lin, C. M.; Hamel, E.; Lee, K. H. Antitumor agents. 178. Synthesis and biological evaluation of substituted 2-aryl-1,8-naphthyridin-4(1H)-ones as antitumor agents that inhibit tubulin polymerization. J. Med. Chem.1997, 40, 3049–3056.10.1021/jm970146hSearch in Google Scholar

[6] Ferrarini, P. L.; Mori, C.; Badawneh, M.; Calderone, V.; Greco, R.;Manera, C.; Martinelli, A.; Nieri, P.; Saccomanni, G. Synthesis and beta-blocking activity of (R,S)-(E)-oxime ethers of 2,3-dihydro-1,8-naphthyridine and 2,3-dihydrothiopyrano[2,3-b] pyridine: potential antihypertensive agents - part IX. Eur. J. Med. Chem.2000, 35, 815–826.10.1016/S0223-5234(00)00173-2Search in Google Scholar

[7] Sherlock, M. H.; Kaminski, J. J.; Tom, W. C.; Lee, J. F.; Wong, S. C.; Kreutner, W.; Bryant, R. W.; Mcphail, A. T. Antiallergy Agents. 1. Substituted 1,8-Naphthyridin-2(1H)-ones as Inhibitors of SRS-A Release. J. Med. Chem.1988, 31, 2 108–2121.10.1021/jm00119a010Search in Google Scholar PubMed

[8] Barlin, G.; Tan, W. Potential Antimalarials. 1,8-Naphthyridines. Aust. J. Chem.1984, 37, 1065–1073.10.1071/CH9841065Search in Google Scholar

[9] Ravikumar Naik, T. R.; Bhojya Naik, H. S.; Raghavendra, M.; Krishna Naik, S. G. Synthesis of thieno[2,3-b]benzo[1,8]naphthyridine-2-carboxylic acids under microwave irradiation and interaction with DNA studies. Arkivoc2006, XV, 84–94.10.3998/ark.5550190.0007.f11Search in Google Scholar

[10] Christobel Vandana, J.; Ragunath, L.; Rajendran, S. P. A convenient synthesis of 2-chlorobenzo[b][1,8]naphthyridines. Indian J. Chem. Sec. B2006, 45, 1564–1566.10.1002/chin.200640150Search in Google Scholar

[11] Mekheimer, R. A.; Abdel Hameed, A. M.; Sadek, K. U. 1,8-Naphthyridines II: synthesis of novel polyfunctionally substituted 1,8-naphthyridinones and their degradation to 6-aminopyridones. Arkivoc2007, Xiii, 269–281.10.3998/ark.5550190.0008.d30Search in Google Scholar

[12] Ravikumar Naik, T. R.; Bhojya Naik, H. S.; Prakash Naik, H. R.; Bindu, P. J.; Harish, B. G.; Krishna, V. Synthesis, DNA binding, docking and photoclevage studies of novel benzo[b][1,8] naphthyridines. Med. Chem.2009, 5, 411–418.10.2174/157340609789117804Search in Google Scholar PubMed

[13] Bunce, R. A.; Nammalwar, B. Ethyl 1,4-Dihydro-4-oxo-1,8-naphthyridine-3-carboxylates by a Tandem SNAr-addition-elimination reaction. J. Heterocycl. Chem.2012, 49, 658–663.10.1002/jhet.917Search in Google Scholar

[14] Cao, C. P.; Lin, W.; Hu, M. H.; Huang, Z. B.; Shi, D. Q. Highly effcient construction of pentacyclic benzo[b]indeno-[1,2,3-de][1,8]naphthyridine derivatives via four-component domino reaction Chem. Commun.2013, 49, 6983–6985.10.1039/c3cc43489cSearch in Google Scholar PubMed

[15] Ranadheer Kumar, M.; Laxminarayana, D.; Ramesh, D.; Sreeniv Asulu, B.; Thirumala Chary, M. A facile synthesis of 2-chloro-1,8-naphthyridine-3-carbaldehyde; its transformation into different functionalities and antimicrobial activity. Int. J. Chem. Sci.2010, 8, 2025–2036.Search in Google Scholar

[16] Nandha Kumar, R.; Suresh, T.; Mohan, P. S. A convenient one-pot synthesis of benzopyrimido[1,8]naphthyridines by Knoevenagel condensation Chem. Heterocycl. Compd. 2004, 40, 1490–1492.10.1007/s10593-005-0077-8Search in Google Scholar

[17] Fu, L.; Lin, W.; Hu, M. H.; Liu, X. C.; Huang, Z. B.; Shi, D. Q. Effcient synthesis of functionalized benzo[b][1,8]naphthyridine derivatives via three-component reaction catalyzed by L–proline. ACS Comb. Sci.2014, 16, 238–243.10.1021/co4001524Search in Google Scholar PubMed

Received: 2017-12-15
Accepted: 2018-1-26
Published Online: 2018-2-21
Published in Print: 2018-4-25

©2018 Walter de Gruyter GmbH, Berlin/Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 16.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/hc-2017-0265/html
Scroll to top button