Startseite Props in model categories and homotopy invariance of structures
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Props in model categories and homotopy invariance of structures

  • Benoit Fresse
Veröffentlicht/Copyright: 19. März 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Georgian Mathematical Journal
Aus der Zeitschrift Band 17 Heft 1

Abstract

We prove that any category of props in a symmetric monoidal model category inherits a model structure. We devote an appendix, about half the size of the paper, to the proof of the model category axioms in a general setting. We need the general argument to address the case of props in topological spaces and dg-modules over an arbitrary ring, but we give a less technical proof which applies to the category of props in simplicial sets, simplicial modules, and dg-modules over a ring of characteristic 0.

We apply the model structure of props to the homotopical study of algebras over a prop. Our goal is to prove that an object 𝑋 homotopy equivalent to an algebra 𝐴 over a cofibrant prop P inherits a P-algebra structure so that 𝑋 defines a model of 𝐴 in the homotopy category of P-algebras. In the differential graded context, this result leads to a generalization of Kadeishvili's minimal model of 𝐴-algebras.

Received: 2008-12-15
Revised: 2009-12-22
Published Online: 2010-03-19
Published in Print: 2010-March

© de Gruyter 2010

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj.2010.007/html
Button zum nach oben scrollen