Startseite Cartan's constructions and the twisted Eilenberg–Zilber theorem
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cartan's constructions and the twisted Eilenberg–Zilber theorem

  • Víctor Álvarez , José Andrés Armario , María Dolores Frau und Pedro Real
Veröffentlicht/Copyright: 19. März 2010
Veröffentlichen auch Sie bei De Gruyter Brill
Georgian Mathematical Journal
Aus der Zeitschrift Band 17 Heft 1

Abstract

Let 𝐺 × τ 𝐺′ be the principal twisted Cartesian product with fibre 𝐺, base 𝐺 and twisting function where 𝐺 and 𝐺′ are simplicial groups as well as 𝐺 × τ 𝐺′; and 𝐶𝑁(𝐺) ⊗𝑡 𝐶𝑁 (𝐺′) be the twisted tensor product associated to 𝐶𝑁 (𝐺 × τ 𝐺′) by the twisted Eilenberg–Zilber theorem. Here we prove that the pair 𝐶𝑁(𝐺) ⊗𝑡 𝐶𝑁(𝐺′), μ) is a multiplicative Cartan's construction where μ is the standard product on 𝐶𝑁(𝐺) ⊗ 𝐶𝑁(𝐺′). Furthermore, assuming that a contraction from 𝐶𝑁(𝐺′) to 𝐻𝐺′ exists and using the techniques from homological perturbation theory, we extend the former result to other “twisted” tensor products of the form 𝐶𝑁(𝐺) ⊗ 𝐻𝐺′.

Received: 2008-12-29
Published Online: 2010-03-19
Published in Print: 2010-March

© de Gruyter 2010

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj.2010.006/html
Button zum nach oben scrollen