Abstract
In this paper, we establish several inner product inequalities that characterize the positivity of block operator matrices. By examining specific blocks of positive operator matrices involving the Moore–Penrose inverse, we derive new inner product inequalities that refine recently established bounds. As an application, we further refine certain numerical radius inequalities from the literature. Our findings generalize and extend several well-known results in this field, contributing to ongoing advancements in operator inequalities.
Funding statement: The work of Yonghui Ren is supported by the Natural Science Foundation of Henan (252300421797).
References
[1]
A. Abu-Omar and F. Kittaneh,
Numerical radius inequalities for
[2] R. Bhatia, Positive Definite Matrices, Princeton Ser. Appl. Math., Princeton University, Princeton, 2007. Suche in Google Scholar
[3] P. Bhunia, F. Kittaneh and S. Sahoo, Improved numerical radius bounds using the Moore–Penrose inverse, Linear Algebra Appl. 711 (2025), 1–16. 10.1016/j.laa.2025.02.013Suche in Google Scholar
[4] M. L. Buzano, Generalizzazione della diseguaglianza di Cauchy–Schwarz, Rend. Semin. Mat. Univ. Politec. Torino 31 (1971/73), 405–409. Suche in Google Scholar
[5] G. Corach and A. Maestripieri, Weighted generalized inverses, oblique projections, and least-squares problems, Numer. Funct. Anal. Optim. 26 (2005), no. 6, 659–673. 10.1080/01630560500323083Suche in Google Scholar
[6] G. Fongi and M. C. Gonzalez, Moore–Penrose inverse and partial orders on Hilbert space operators, Linear Algebra Appl. 674 (2023), 1–20. 10.1016/j.laa.2023.05.021Suche in Google Scholar
[7] C. W. Groetsch, Generalized Inverses of Linear Operators: Representation and Approximation, Monogr. Textb. Pure Appl. Math. 37, Marcel Dekker, New York, 1977. Suche in Google Scholar
[8]
I. H. Gumus, O. Hirzallah and F. Kittaneh,
Norm inequalities involving accretive-dissipative
[9] T. Hiroshima, Majorization criterion for distillability of a bipartite quantum state, Phys. Rev. Lett. 91 (2003), no. 5, Article ID 057902. 10.1103/PhysRevLett.91.057902Suche in Google Scholar PubMed
[10] F. Kittaneh, Notes on some inequalities for Hilbert space operators, Publ. Res. Inst. Math. Sci. 24 (1988), no. 2, 283–293. 10.2977/prims/1195175202Suche in Google Scholar
[11] F. Kittaneh, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), no. 1, 11–17. 10.4064/sm158-1-2Suche in Google Scholar
[12] F. Kittaneh, Numerical radius inequalities for Hilbert space operators, Studia Math. 168 (2005), no. 1, 73–80. 10.4064/sm168-1-5Suche in Google Scholar
[13] F. Kittaneh, H. R. Moradi and M. Sababheh, Refined Kato inequality and applications to norm and numerical radius inequalities, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 118 (2024), no. 3, Paper No. 97. 10.1007/s13398-024-01600-4Suche in Google Scholar
[14] M. Sababheh, D. S. Djordjević and H. R. Moradi, Numerical radius and norm bounds via the Moore–Penrose inverse, Complex Anal. Oper. Theory 18 (2024), no. 5, Paper No. 117. 10.1007/s11785-024-01560-ySuche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston