Startseite A note on b-generalized (α,β)-derivations in prime rings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A note on b-generalized (α,β)-derivations in prime rings

  • Nripendu Bera ORCID logo EMAIL logo und Basudeb Dhara ORCID logo
Veröffentlicht/Copyright: 4. Januar 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let R be a prime ring, let 0 b R , and let α and β be two automorphisms of R. Suppose that F : R R , F 1 : R R are two b-generalized ( α , β ) -derivations of R associated with the same ( α , β ) -derivation d : R R , and let G : R R be a b-generalized ( α , β ) -derivation of R associated with ( α , β ) -derivation g : R R . The main objective of this paper is to investigate the following algebraic identities:

  1. F ( x y ) + α ( x y ) + α ( y x ) = 0 ,

  2. F ( x y ) + G ( x ) α ( y ) + α ( y x ) = 0 ,

  3. F ( x y ) + G ( y x ) + α ( x y ) + α ( y x ) = 0 ,

  4. F ( x ) F ( y ) + G ( x ) α ( y ) + α ( y x ) = 0 ,

  5. F ( x y ) + d ( x ) F 1 ( y ) + α ( x y ) = 0 ,

  6. F ( x y ) + d ( x ) F 1 ( y ) = 0 ,

  7. F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) = 0 ,

  8. F ( x y ) + d ( x ) F 1 ( y ) + α ( x y ) + α ( y x ) = 0 ,

  9. F ( x y ) + d ( x ) F 1 ( y ) + α ( y x ) - α ( x y ) = 0 ,

  10. [ F ( x ) , x ] α , β = 0 ,

  11. ( F ( x ) x ) α , β = 0 ,

  12. F ( [ x , y ] ) = [ x , y ] α , β ,

  13. F ( x y ) = ( x y ) α , β

for all x , y in some suitable subset of R.

MSC 2020: 16W25; 16N60

Funding statement: Second author is supported by a grant from Science and Engineering Research Board (SERB), New Delhi, India. Grant No. is MTR/2022/000568.

Acknowledgements

We are highly thankful to the referee whose comments and suggestions enhanced the paper and made it more readable.

References

[1] E. Albaş, Generalized derivations on ideals of prime rings, Miskolc Math. Notes 14 (2013), no. 1, 3–9. 10.18514/MMN.2013.499Suche in Google Scholar

[2] A. Ali, V. De Filippis and F. Shujat, On one sided ideals of a semiprime ring with generalized derivations, Aequationes Math. 85 (2013), no. 3, 529–537. 10.1007/s00010-012-0150-1Suche in Google Scholar

[3] F. Ali and M. A. Chaudhry, On generalized ( α , β ) -derivations of semiprime rings, Turkish J. Math. 35 (2011), no. 3, 399–404. 10.3906/mat-0906-60Suche in Google Scholar

[4] M. Ashraf, A. Ali and S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math. 31 (2007), no. 3, 415–421. Suche in Google Scholar

[5] M. Ashraf, A. Ali and R. Rani, On generalized derivations of prime rings, Southeast Asian Bull. Math. 29 (2005), no. 4, 669–675. Suche in Google Scholar

[6] M. Ashraf and N. ur Rehman, On derivation and commutativity in prime rings, East-West J. Math. 3 (2001), no. 1, 87–91. Suche in Google Scholar

[7] M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205–206. 10.1155/S0161171292000255Suche in Google Scholar

[8] V. De Filippis and F. Wei, b-generalized ( α , β ) -derivations and b-generalized ( α , β ) -biderivations of prime rings, Taiwanese J. Math. 22 (2018), no. 2, 313–323. 10.11650/tjm/170903Suche in Google Scholar

[9] B. Dhara, Remarks on generalized derivations in prime and semiprime rings, Int. J. Math. Math. Sci. 2010 (2010), Article ID 646587. 10.1155/2010/646587Suche in Google Scholar

[10] B. Dhara, Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings, Beitr. Algebra Geom. 53 (2012), no. 1, 203–209. 10.1007/s13366-011-0051-9Suche in Google Scholar

[11] B. Dhara, S. Kar and N. Bera, Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings, Rend. Circ. Mat. Palermo (2) 72 (2023), no. 2, 1497–1516. 10.1007/s12215-022-00743-wSuche in Google Scholar

[12] B. Dhara, S. Kar and S. Mondal, A result on generalized derivations on Lie ideals in prime rings, Beitr. Algebra Geom. 54 (2013), no. 2, 677–682. 10.1007/s13366-012-0128-0Suche in Google Scholar

[13] B. Dhara, S. Kar and S. Mondal, Commutativity theorems on prime and semiprime rings with generalized ( σ , τ ) -derivations, Bol. Soc. Parana. Mat. (3) 32 (2014), no. 1, 109–122. 10.5269/bspm.v32i1.15762Suche in Google Scholar

[14] B. Dhara, S. Kar and K. G. Pradhan, Generalized derivations acting as homomorphism or anti-homomorphism with central values in semiprime rings, Miskolc Math. Notes 16 (2015), no. 2, 781–791. 10.18514/MMN.2015.1507Suche in Google Scholar

[15] C. Garg and R. K. Sharma, On generalized ( α , β ) -derivations in prime rings, Rend. Circ. Mat. Palermo (2) 65 (2016), no. 2, 175–184. 10.1007/s12215-015-0227-5Suche in Google Scholar

[16] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), no. 4, 1147–1166. 10.1080/00927879808826190Suche in Google Scholar

[17] Y.-S. Jung and K.-H. Park, On generalized ( α , β ) -derivations and commutativity in prime rings, Bull. Korean Math. Soc. 43 (2006), no. 1, 101–106. 10.4134/BKMS.2006.43.1.101Suche in Google Scholar

[18] H. Marubayashi, M. Ashraf, N.-u. Rehman and S. Ali, On generalized ( α , β ) -derivations in prime rings, Algebra Colloq. 17 (2010), Special Issue 1, 865–874. 10.1142/S1005386710000805Suche in Google Scholar

[19] S. K. Tiwari, R. K. Sharma and B. Dhara, Identities related to generalized derivation on ideal in prime rings, Beitr. Algebra Geom. 57 (2016), no. 4, 809–821. 10.1007/s13366-015-0262-6Suche in Google Scholar

Received: 2023-04-06
Revised: 2023-10-27
Accepted: 2023-11-09
Published Online: 2024-01-04
Published in Print: 2024-10-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2121/html?lang=de
Button zum nach oben scrollen