Home Some summation theorems and transformations for hypergeometric functions of Kampé de Fériet and Srivastava
Article
Licensed
Unlicensed Requires Authentication

Some summation theorems and transformations for hypergeometric functions of Kampé de Fériet and Srivastava

  • Hari M. Srivastava EMAIL logo , Bhawna Gupta , Mohammad Idris Qureshi and Mohd Shaid Baboo
Published/Copyright: January 2, 2024
Become an author with De Gruyter Brill

Abstract

Owing to the remarkable success of the hypergeometric functions of one variable, the authors present a study of some families of hypergeometric functions of two or more variables. These functions include (for example) the Kampé de Fériet-type hypergeometric functions in two variables and Srivastava’s general hypergeometric function in three variables. The main aim of this paper is to provide several (presumably new) transformation and summation formulas for appropriately specified members of each of these families of hypergeometric functions in two and three variables. The methodology and techniques, which are used in this paper, are based upon the evaluation of some definite integrals involving logarithmic functions in terms of Riemann’s zeta function, Catalan’s constant, polylogarithm functions, and so on.

Acknowledgements

The first-named author (H. M. Srivastava) wishes to pay a tribute and dedicate this article to Joseph (or, more precisely, Marie-Joseph) Kampé de Fériet (1893–1982) of Université Lille Nord de France, with whom he had the proud privilege to have personally met in France in September 1970, and with whom he also mutually discussed contemporary mathematical researches, especially on various families of hypergeometric and generalized functions of one, two and more variables. Undoubtedly, the enormous contributions to this field as well as to various other related fields by Paul Émile Appell (1855–1930) and Marie-Joseph Kampé de Fériet (1893–1982), which we have investigated and developed in this article, will continue to inspire and encourage future researchers in each of these fields.

References

[1] T. M. Apostol, Introduction to Analytic Number Theory, Undergrad. Texts Math., Springer, New York, 1976. 10.1007/978-1-4757-5579-4Search in Google Scholar

[2] P. Appell, Sur les séries hypergéometriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles, C. R. Acad. Sci. Paris 90 (1880), 296–298. Search in Google Scholar

[3] P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques. Polynômes d’Hermite, Gauthiers-Villars, Paris, 1926. Search in Google Scholar

[4] M. S. Baboo, Exact solutions of outstanding problems and novel proofs through hypergeometric approach, Ph.D. thesis, Jamia Millia Islamia, New Delhi, 2017. Search in Google Scholar

[5] D. R. Bradley, Representations of Catalan’s constant, (2001), https://www.researchgate.net/publication/2325473_Representations_of_Catalan's_Constant/citations. Search in Google Scholar

[6] J. L. Burchnall and T. W. Chaundy, Expansions of Appell’s double hypergeometric functions, Quart. J. Math. Oxford Ser. 11 (1940), 249–270. 10.1093/qmath/os-11.1.249Search in Google Scholar

[7] J. L. Burchnall and T. W. Chaundy, Expansions of Appell’s double hypergeometric functions. II, Quart. J. Math. Oxford Ser. 12 (1941), 112–128. 10.1093/qmath/os-12.1.112Search in Google Scholar

[8] E. Catalan, Recherches sur la constante G, et sur les intégrales Eulériennes, Mém. Acad. Imp. Sci. St.-Pétersbourg Sér. 7 31 (1883), no. 3, 1–51. Search in Google Scholar

[9] J. Choi and A. K. Rathie, General summation formulas for the Kampé de Fériet function, Montes Taurus J. Pure Appl. Math. 1 (2019), no. 1, 107–128. Search in Google Scholar

[10] J. Choi and H. M. Srivastava, A reducible case of double hypergeometric series involving the Riemann ζ-function, Bull. Korean Math. Soc. 33 (1996), no. 1, 107–110. Search in Google Scholar

[11] D. Cvijović and A. R. Miller, A reduction formula for the Kampé de Fériet function, Appl. Math. Lett. 23 (2010), no. 7, 769–771. 10.1016/j.aml.2010.03.006Search in Google Scholar

[12] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions. Vols. I, II, McGraw-Hill, New York, 1953. Search in Google Scholar

[13] N. T. Hài, O. I. Marichev and H. M. Srivastava, A note on the convergence of certain families of multiple hypergeometric series, J. Math. Anal. Appl. 164 (1992), no. 1, 104–115. 10.1016/0022-247X(92)90147-6Search in Google Scholar

[14] P. Humbert, La fonction W k , μ 1 , μ 2 , , μ n ( x 1 , x 2 , , x n ) , C. R. Acad. Sci. Paris 171 (1920), 428–430. Search in Google Scholar

[15] P. Humbert, The confluent hypergeometric functions of two variables, Proc. Roy. Soc. Edinburgh Sect. A 41 (1922), 73–96. 10.1017/S0370164600009810Search in Google Scholar

[16] J. Kampé de Fériet, Les fonctions hypergéométriques of ordre supérieur à deux variables, C. R. Acad. Sci. Paris 173 (1921), 401–404. Search in Google Scholar

[17] P. W. Karlsson, Reduction of certain generalized Kampé de Fériet functions, Math. Scand. 32 (1973), 265–268. 10.7146/math.scand.a-11461Search in Google Scholar

[18] G. Lauricella, Sulle funzioni ipergeometriche a più variabili, Rend. Circ. Mat. Palermo 7 (1893), 111–158. 10.1007/BF03012437Search in Google Scholar

[19] L. Lewin, Dilogarithms and Associated Functions, Macdonald, London, 1958. Search in Google Scholar

[20] L. Lewin, Polylogarithms and Associated Functions, North-Holland, New York, 1981. Search in Google Scholar

[21] H. Liu and W. Wang, Transformation and summation formulae for Kampé de Fériet series, J. Math. Anal. Appl. 409 (2014), no. 1, 100–110. 10.1016/j.jmaa.2013.06.068Search in Google Scholar

[22] A. W. Niukkanen, Generalised hypergeometric series F N ( x 1 , , x N ) arising in physical and quantum chemical applications, J. Phys. A 16 (1983), no. 9, 1813–1825. 10.1088/0305-4470/16/9/007Search in Google Scholar

[23] S. N. Pitre and J. Van der Jeugt, Transformation and summation formulas for Kampé de Fériet series F 1 : 1 0 : 3 ( 1 , 1 ) , J. Math. Anal. Appl. 202 (1996), no. 1, 121–132. 10.1006/jmaa.1996.0306Search in Google Scholar

[24] A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev, Integrals and Series. Vol. 3, Gordon and Breach Science, New York, 1990. Search in Google Scholar

[25] M. I. Qureshi and M. S. Baboo, Power series and hypergeometric representations associated with positive integral powers, South Asian J. Math. 8 (2018), no. 3, 144–150. Search in Google Scholar

[26] E. D. Rainville, Special Functions, The Macmillan, New York, 1960. Search in Google Scholar

[27] M. Saigo, On properties of hypergeometric functions of three variables, F M and F G , Rend. Circ. Mat. Palermo (2) 37 (1988), no. 3, 449–468. 10.1007/BF02844643Search in Google Scholar

[28] H. M. Srivastava, Hypergeometric functions of three variables, Gaṇita 15 (1964), 97–108. Search in Google Scholar

[29] H. M. Srivastava, On transformations of certain hypergeometric functions of three variables, Publ. Math. Debrecen 12 (1965), 65–74. 10.5486/PMD.1965.12.1-4.09Search in Google Scholar

[30] H. M. Srivastava, Generalized Neumann expansions involving hypergeometric functions, Proc. Cambridge Philos. Soc. 63 (1967), 425–429. 10.1017/S0305004100041359Search in Google Scholar

[31] H. M. Srivastava, Some integrals representing triple hypergeometric functions, Rend. Circ. Mat. Palermo (2) 16 (1967), 99–115. 10.1007/BF02844089Search in Google Scholar

[32] H. M. Srivastava, A class of generalised multiple hypergeometric series arising in physical and quantum chemical applications, J. Phys. A 18 (1985), no. 5, L227–L234. 10.1088/0305-4470/18/5/001Search in Google Scholar

[33] H. M. Srivastava, Reduction and summation formulae for certain classes of generalised multiple hypergeometric series arising in physical and quantum chemical applications. Addendum to: “A class of generalised multiple hypergeometric series arising in physical and quantum chemical applications” [J. Phys. A 18 (1985), no. 5, 227–234; MR0780505 (86e:33010)], J. Phys. A 18 (1985), no. 15, 3079–3085. Search in Google Scholar

[34] H. M. Srivastava, Neumann expansions for a certain class of generalised multiple hypergeometric series arising in physical and quantum chemical applications, J. Phys. A 20 (1987), no. 4, 847–855. 10.1088/0305-4470/20/4/020Search in Google Scholar

[35] H. M. Srivastava, Some Clebsch–Gordan type linearisation relations and other polynomial expansions associated with a class of generalised multiple hypergeometric series arising in physical and quantum chemical applications, J. Phys. A 21 (1988), no. 23, 4463–4470. 10.1088/0305-4470/21/23/026Search in Google Scholar

[36] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic, Dordrecht, 2001. 10.1007/978-94-015-9672-5Search in Google Scholar

[37] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Amsterdam, 2012. 10.1016/B978-0-12-385218-2.00002-5Search in Google Scholar

[38] H. M. Srivastava and M. C. Daoust, Certain generalized Neumann expansions associated with the Kampé de Fériet function, Indag. Math. 31 (1969), 449–457. Search in Google Scholar

[39] H. M. Srivastava and M. C. Daoust, On Eulerian integrals associated with Kampé de Fériet’s function, Publ. Inst. Math. (Beograd) (N. S.) 9(23) (1969), 199–202. Search in Google Scholar

[40] H. M. Srivastava and M. C. Daoust, A note on the convergence of Kampé de Fériet’s double hypergeometric series, Math. Nachr. 53 (1972), 151–159. 10.1002/mana.19720530114Search in Google Scholar

[41] H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood Ser. Math. Appl., Ellis Horwood, New York, 1985. Search in Google Scholar

[42] H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Ellis Horwood Ser. Math. Appl., Ellis Horwood, New York, 1984. Search in Google Scholar

[43] H. M. Srivastava and E. A. Miller, A simple reducible case of double hypergeometric series involving Catalan’s constant and Riemann’s ζ-function, Internat. J. Math. Ed. Sci. Tech. 21 (1990), no. 3, 375–377. 10.1080/0020739900210304Search in Google Scholar

[44] H. M. Srivastava and R. Panda, Some analytic or asymptotic confluent expansions for functions of several variables, Math. Comput. 29 (1975), no. 132, 1115–1128. 10.1090/S0025-5718-1975-0387695-XSearch in Google Scholar

[45] H. M. Srivastava and R. Panda, An integral representation for the product of two Jacobi polynomials, J. Lond. Math. Soc. (2) 12 (1975/76), no. 4, 419–425. 10.1112/jlms/s2-12.4.419Search in Google Scholar

[46] H. M. Srivastava and M. A. Pathan, Some bilateral generating functions for the extended Jacobi polynomials, Comment. Math. Univ. St. Pauli 28 (1980), no. 1, 23–30. Search in Google Scholar

[47] H. M. Srivastava, R. C. Singh Chandel and H. Kumar, Some general Hurwitz–Lerch type zeta functions associated with the Srivastava–Daoust multiple hypergeometric functions, J. Nonlinear Var. Anal. 6 (2022), no. 4, 299–315. 10.23952/jnva.6.2022.4.01Search in Google Scholar

[48] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th ed., Cambridge University, New York, 1927. Search in Google Scholar

Received: 2023-06-25
Accepted: 2023-08-14
Published Online: 2024-01-02
Published in Print: 2024-10-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2114/html
Scroll to top button