Startseite Uniform excess of g-frames
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Uniform excess of g-frames

  • Ahmad Ahmadi EMAIL logo und Abbas Askarizadeh
Veröffentlicht/Copyright: 25. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Let { Λ i } i be a g-frame for 𝒰 with respect to { 𝒱 i } i , where 𝒰 and { 𝒱 i } i are Hilbert spaces. The excess of { Λ i } i is the largest cardinal number of the subsets 𝒥 of such that { Λ i } i 𝒥 is a g-frame for 𝒰 with respect to { 𝒱 i } i 𝒥 . In this paper, we consider the excess of a g-frame and introduce the concept of m-uniform excess for g-frames. Also, we present constructions of m-uniform excess g-frames. Finally, we investigate the relationship between m-uniform excess g-frames and woven g-frames.

MSC 2020: 42C15; 46B28

Acknowledgements

The authors are grateful to the referees for their careful reading and useful comments.

References

[1] T. Bemrose, P. G. Casazza, K. Gröchenig, M. C. Lammers and R. G. Lynch, Weaving frames, Oper. Matrices 10 (2016), no. 4, 1093–1116. 10.7153/oam-10-61Suche in Google Scholar

[2] J. J. Benedetto and S. Li, The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal. 5 (1998), no. 4, 389–427. 10.1006/acha.1997.0237Suche in Google Scholar

[3] B. G. Bodmann, D. W. Kribs and V. I. Paulsen, Decoherence-insensitive quantum communication by optimal C * -encoding, IEEE Trans. Inform. Theory 53 (2007), no. 12, 4738–4749. 10.1109/TIT.2007.909105Suche in Google Scholar

[4] P. G. Casazza, D. Han and D. R. Larson, Frames for Banach spaces, The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio 1999), Contemp. Math. 247, American Mathematical Society, Providence (1999), 149–182. 10.1090/conm/247/03801Suche in Google Scholar

[5] P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008), no. 1, 114–132. 10.1016/j.acha.2007.10.001Suche in Google Scholar

[6] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003. 10.1007/978-0-8176-8224-8Suche in Google Scholar

[7] C. E. D’Attellis and E. M. Fernández-Berdaguer, Wavelet Theory and Harmonic Analysis in Applied Sciences, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 1997. 10.1007/978-1-4612-2010-7Suche in Google Scholar

[8] I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), no. 5, 1271–1283. 10.1063/1.527388Suche in Google Scholar

[9] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366. 10.1090/S0002-9947-1952-0047179-6Suche in Google Scholar

[10] K. Gröchenig, Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0003-1Suche in Google Scholar

[11] D. Han and W. Sun, Reconstruction of signals from frame coefficients with erasures at unknown locations, IEEE Trans. Inform. Theory 60 (2014), no. 7, 4013–4025. 10.1109/TIT.2014.2320937Suche in Google Scholar

[12] A. A. Hemmat and J.-P. Gabardo, Properties of oblique dual frames in shift-invariant systems, J. Math. Anal. Appl. 356 (2009), no. 1, 346–354. 10.1016/j.jmaa.2009.01.044Suche in Google Scholar

[13] A. J. E. M. Janssen, Gabor representation of generalized functions, J. Math. Anal. Appl. 83 (1981), no. 2, 377–394. 10.1016/0022-247X(81)90130-XSuche in Google Scholar

[14] A. J. E. M. Janssen, Bargmann transform, Zak transform, and coherent states, J. Math. Phys. 23 (1982), no. 5, 720–731. 10.1063/1.525426Suche in Google Scholar

[15] A. Khosravi and K. Musazadeh, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008), no. 2, 1068–1083. 10.1016/j.jmaa.2008.01.002Suche in Google Scholar

[16] D. Li, J. Leng, T. Huang and X. Li, On weaving g-frames for Hilbert spaces, Complex Anal. Oper. Theory 14 (2020), no. 2, Paper No. 33, 10.1007/s11785-020-00991-7. 10.1007/s11785-020-00991-7Suche in Google Scholar

[17] A. Najati, M. H. Faroughi and A. Rahimi, g-frames and stability of g-frames in Hilbert spaces, Methods Funct. Anal. Topology 14 (2008), no. 3, 271–286. Suche in Google Scholar

[18] A. Najati and A. Rahimi, Generalized frames in Hilbert spaces, Bull. Iranian Math. Soc. 35 (2009), no. 1, 97–109. Suche in Google Scholar

[19] A. Ron and Z. Shen, Weyl–Heisenberg frames and Riesz bases in L 2 ( 𝐑 d ) , Duke Math. J. 89 (1997), no. 2, 237–282. 10.1215/S0012-7094-97-08913-4Suche in Google Scholar

[20] W. Sun, G-frames and g-Riesz bases, J. Math. Anal. Appl. 322 (2006), no. 1, 437–452. 10.1016/j.jmaa.2005.09.039Suche in Google Scholar

[21] W. Sun, Stability of g-frames, J. Math. Anal. Appl. 326 (2007), no. 2, 858–868. 10.1016/j.jmaa.2006.03.043Suche in Google Scholar

[22] X. Xiao, G. Zhou and Y. Zhu, Uniform excess frames in Hilbert spaces, Results Math. 73 (2018), no. 3, Paper No. 108, /10.1007/s00025-018-0871-0. /10.1007/s00025-018-0871-0Suche in Google Scholar

[23] R. M. Young, An Introduction to Nonharmonic Fourier Series, Pure Appl. Math. 93, Academic Press, New York, 1980. Suche in Google Scholar

[24] L. Zang, W. Sun and D. Chen, Excess of a class of g-frames, J. Math. Anal. Appl. 352 (2009), no. 2, 711–717. 10.1016/j.jmaa.2008.11.030Suche in Google Scholar

Received: 2022-12-08
Revised: 2023-01-19
Accepted: 2023-01-25
Published Online: 2023-07-25
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2049/pdf
Button zum nach oben scrollen