Startseite On uniform statistical convergence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On uniform statistical convergence

  • Mustafa Gülfırat EMAIL logo und Nilay Şahin Bayram
Veröffentlicht/Copyright: 25. Juli 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper is a continuation of the so far performed studies on the concept of uniform statistical convergence. We first characterize two inequalities concerning the uniform statistical limit superior that lead to two core inclusion results for bounded real sequences. Using the inverse Fourier transformation, we also give a criterion on uniform statistical convergence, and study some factorization results of the space of uniformly statistically convergent sequences. These results are used to give a Korovkin-type approximation theorem.

MSC 2020: 40A35; 40G15

Acknowledgements

We are grateful to the anonymous reviewer for a careful reading and suggested changes which improved the manuscript.

References

[1] Ö. G. Atlihan, H. G. Ince and C. Orhan, Some variations of the Bohman–Korovkin theorem, Math. Comput. Modelling 50 (2009), no. 7–8, 1205–1210. 10.1016/j.mcm.2009.06.009Suche in Google Scholar

[2] V. Baláž and T. Šalát, Uniform density u and corresponding I u -convergence, Math. Commun. 11 (2006), no. 1, 1–7. Suche in Google Scholar

[3] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 576 (1996), 1–130. 10.1090/memo/0576Suche in Google Scholar

[4] H. Bohman, On approximation of continuous and of analytic functions, Ark. Mat. 2 (1952), 43–56. 10.1007/BF02591381Suche in Google Scholar

[5] J. Boos, Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford University, Oxford, 2000. 10.1093/oso/9780198501657.001.0001Suche in Google Scholar

[6] T. C. Brown and A. R. Freedman, Arithmetic progressions in lacunary sets, Rocky Mountain J. Math. 17 (1987), no. 3, 587–596. 10.1216/RMJ-1987-17-3-587Suche in Google Scholar

[7] T. C. Brown and A. R. Freedman, The uniform density of sets of integers and Fermat’s last theorem, C. R. Math. Rep. Acad. Sci. Canada 12 (1990), no. 1, 1–6. Suche in Google Scholar

[8] J. Connor, K. Demirci and C. Orhan, Multipliers and factorizations for bounded statistically convergent sequences, Analysis (Munich) 22 (2002), no. 4, 321–333. 10.1524/anly.2002.22.4.321Suche in Google Scholar

[9] G. Das, Sublinear functionals and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica 15 (1987), no. 1, 89–106. Suche in Google Scholar

[10] K. Demirci, A criterion for A-statistical convergence, Indian J. Pure Appl. Math. 29 (1998), no. 5, 559–564. Suche in Google Scholar

[11] K. Demirci, -limit superior and limit inferior, Math. Commun. 6 (2001), no. 2, 165–172. Suche in Google Scholar

[12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. 10.4064/cm-2-3-4-241-244Suche in Google Scholar

[13] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293–305. 10.2140/pjm.1981.95.293Suche in Google Scholar

[14] J. A. Fridy, On statistical convergence, Analysis 5 (1985), no. 4, 301–313. 10.1524/anly.1985.5.4.301Suche in Google Scholar

[15] J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3625–3631. 10.1090/S0002-9939-97-04000-8Suche in Google Scholar

[16] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted mean Operators and Hardy’s Inequality, Lecture Notes in Math. 1679, Springer, Berlin, 1998. 10.1007/BFb0093486Suche in Google Scholar

[17] M. Gülfirat and N. Şahin Bayram, Multipliers and -core for sequences, Turkish J. Math. 45 (2021), no. 3, 1310–1318. 10.3906/mat-2102-97Suche in Google Scholar

[18] K. Knopp, Zur Theorie der Limitierungsverfahren, Math. Z. 31 (1930), no. 1, 97–127. 10.1007/BF01246399Suche in Google Scholar

[19] P. P. Korovkin, Linear Operators and Approximation Theory, Russian Monogr. Texts Adv. Math. Phys. 3, Gordon and Breach, New York, 1960. Suche in Google Scholar

[20] P. Kostyrko, T. Šalát and W. Wilczyński, -convergence, Real Anal. Exchange 26 (2000/01), no. 2, 669–685. 10.2307/44154069Suche in Google Scholar

[21] H. E. Lomelí and C. L. García, Variations on a theorem of Korovkin, Amer. Math. Monthly 113 (2006), no. 8, 744–750. 10.1080/00029890.2006.11920358Suche in Google Scholar

[22] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167–190. 10.1007/BF02393648Suche in Google Scholar

[23] I. J. Maddox, A new type of convergence, Math. Proc. Cambridge Philos. Soc. 83 (1978), no. 1, 61–64. 10.1017/S0305004100054281Suche in Google Scholar

[24] I. J. Maddox, On strong almost convergence, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 2, 345–350. 10.1017/S0305004100055766Suche in Google Scholar

[25] I. J. Maddox, Some analogues of Knopp’s core theorem, Internat. J. Math. Math. Sci. 2 (1979), no. 4, 605–614. 10.1155/S0161171279000454Suche in Google Scholar

[26] H. I. Miller and C. Orhan, On almost convergent and statistically convergent subsequences, Acta Math. Hungar. 93 (2001), no. 1–2, 135–151. Suche in Google Scholar

[27] M. Mursaleen and O. H. H. Edely, Generalized statistical convergence, Inform. Sci. 162 (2004), no. 3–4, 287–294. 10.1016/j.ins.2003.09.011Suche in Google Scholar

[28] C. Orhan, Sublinear functionals and Knopp’s core theorem, Internat. J. Math. Math. Sci. 13 (1990), no. 3, 461–468. 10.1155/S0161171290000680Suche in Google Scholar

[29] C. Orhan and Ş. Yardimci, Banach and statistical cores of bounded sequences, Czechoslovak Math. J. 54(129) (2004), no. 1, 65–72. 10.1023/B:CMAJ.0000027247.75771.b3Suche in Google Scholar

[30] S. Pehlivan, Strongly almost convergent sequences defined by a modulus and uniformly statistical convergence, Soochow J. Math. 20 (1994), no. 2, 205–211. Suche in Google Scholar

[31] N. Şahin Bayram, Criteria for statistical convergence with respect to power series methods, Positivity 25 (2021), no. 3, 1097–1105. 10.1007/s11117-020-00801-6Suche in Google Scholar

[32] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), no. 2, 139–150. Suche in Google Scholar

[33] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly 66 (1959), 361–375. 10.2307/2308747Suche in Google Scholar

[34] H. Steinhaus, Sur la convergence ordinaire et la convergence asymtotique, Colloq. Math. 2 (1951), no. 1, 73–74. Suche in Google Scholar

[35] T. Yurdakadim and L. Miller-Van-Wieren, Some results on uniform statistical cluster points, Turkish J. Math. 41 (2017), no. 5, 1133–1139. 10.3906/mat-1607-21Suche in Google Scholar

Received: 2022-09-25
Revised: 2023-02-06
Accepted: 2023-04-03
Published Online: 2023-07-25
Published in Print: 2023-12-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2052/html
Button zum nach oben scrollen