Startseite The Wigner transformation associated with the Hankel multidimensional operator
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The Wigner transformation associated with the Hankel multidimensional operator

  • Besma Amri ORCID logo EMAIL logo
Veröffentlicht/Copyright: 12. April 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

We consider the Hankel multidimensional operator Δ α , α = ( α 1 , , α n ) ] 1 2 , + [ n , defined on ] 0 , + [ n by

Δ α = j = 1 n ( 2 x j 2 + 2 α j + 1 x j x j ) .

We define and study the Wigner transformation V g (called also Gabor transform), where g L 2 ( d μ α ) and d μ α is the measure defined on [ 0 , + [ n by

d μ α ( x ) = j = 1 n x j 2 α j + 1 2 α j Γ ( α j + 1 ) d x j .

Using harmonic analysis related to the Hankel operator Δ α , we prove a Plancherel theorem and an orthogonality property for the transformation V g . Next, we establish a reconstruction formula for V g and give some applications. In the second part of this work, as applications of the Wigner transformation V g , we define and study the anti-Wick operators A g 1 , g 2 ( σ ) , where g 1 , g 2 L 2 ( d μ α ) are called window functions and σ L p ( d μ α d μ α ) is a signal. Building on the properties of the Wigner transformation V g , we prove that the operators A g 1 , g 2 ( σ ) are bounded linear operators and compact on the Hilbert space L 2 ( d μ α ) . Finally, we establish a formula of the trace for the anti-Wick operator A g 1 , g 2 ( σ ) when the signal 𝜎 belongs to L 1 ( d μ α d μ α ) .

MSC 2010: 42A38; 44A35

References

[1] B. Amri and L. T. Rachdi, Beckner logarithmic uncertainty principle for the Riemann–Liouville operator, Internat. J. Math. 24 (2013), no. 9, Article ID 1350070. 10.1142/S0129167X13500705Suche in Google Scholar

[2] B. Amri and L. T. Rachdi, Calderon-reproducing formula for singular partial differential operators, Integral Transforms Spec. Funct. 25 (2014), no. 8, 597–611. 10.1080/10652469.2014.888807Suche in Google Scholar

[3] B. Amri and L. T. Rachdi, Uncertainty principle in terms of entropy for the Riemann–Liouville operator, Bull. Malays. Math. Sci. Soc. 39 (2016), no. 1, 457–481. 10.1007/s40840-015-0121-5Suche in Google Scholar

[4] F. A. Berezin, Wick and anti-Wick symbols of operators, Mat. Sb. (N. S.) 86(128) (1971), 578–610; translation in Math. USSR-Sb. 15 (1971), no. 4, 577–606. Suche in Google Scholar

[5] A. Besma, The Hardy–Littlewood operator associated with the Riemann–Liouville transform, Indag. Math. (N. S.) 29 (2018), no. 5, 1270–1289. 10.1016/j.indag.2018.05.007Suche in Google Scholar

[6] E. Cordero and K. Gröchenig, Time-frequency analysis of localization operators, J. Funct. Anal. 205 (2003), no. 1, 107–131. 10.1016/S0022-1236(03)00166-6Suche in Google Scholar

[7] A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979–1005. 10.1080/03605307808820083Suche in Google Scholar

[8] I. Daubechies, Time-frequency localization operators: A geometric phase space approach, IEEE Trans. Inform. Theory 34 (1988), no. 4, 605–612. 10.1109/18.9761Suche in Google Scholar

[9] I. Daubechies and T. Paul, Time-frequency localisation operators—a geometric phase space approach. II. The use of dilations, Inverse Problems 4 (1988), no. 3, 661–680. 10.1088/0266-5611/4/3/009Suche in Google Scholar

[10] F. De Mari, H. G. Feichtinger and K. Nowak, Uniform eigenvalue estimates for time-frequency localization operators, J. London Math. Soc. (2) 65 (2002), no. 3, 720–732. 10.1112/S0024610702003101Suche in Google Scholar

[11] F. De Mari and K. Nowak, Localization type Berezin–Toeplitz operators on bounded symmetric domains, J. Geom. Anal. 12 (2002), no. 1, 9–27. 10.1007/BF02930858Suche in Google Scholar

[12] A. Erdélyi, Asymptotic Expansions, Dover, New York, 1956. Suche in Google Scholar

[13] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms. Vol. I, McGraw-Hill, New York, 1954. Suche in Google Scholar

[14] H. G. Feichtinger and K. Nowak, A first survey of Gabor multipliers, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston (2003), 99–128. 10.1007/978-1-4612-0133-5_5Suche in Google Scholar

[15] G. B. Folland, Real Analysis, 2nd ed., Pure Appl. Math. (New York), John Wiley & Sons, New York, 1999. Suche in Google Scholar

[16] D. Gabor, Theory of communication, J. Inst. Elect. Engr. 93 (1946), no. 26, 429–457. 10.1049/ji-3-2.1946.0076Suche in Google Scholar

[17] K. Gröchenig, Foundations of Time-Frequency Analysis, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2001. 10.1007/978-1-4612-0003-1Suche in Google Scholar

[18] K. Gröchenig, Foundations of Time-Frequency Analysis, Springer, New York, 2013. Suche in Google Scholar

[19] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Anal. Math. 8 (1960/61), 307–336. 10.1007/BF02786854Suche in Google Scholar

[20] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972. Suche in Google Scholar

[21] S. Omri and L. T. Rachdi, Heisenberg–Pauli–Weyl uncertainty principle for the Riemann–Liouville operator, JIPAM. J. Inequal. Pure Appl. Math. 9 (2008), no. 3, Article ID 88. Suche in Google Scholar

[22] J. Ramanathan and P. Topiwala, Time-frequency localization via the Weyl correspondence, SIAM J. Math. Anal. 24 (1993), no. 5, 1378–1393. 10.1137/0524080Suche in Google Scholar

[23] S. Saitoh, The Weierstrass transform and an isometry in the heat equation, Appl. Anal. 16 (1983), no. 1, 1–6. 10.1080/00036818308839454Suche in Google Scholar

[24] S. Saitoh, Approximate real inversion formulas of the Gaussian convolution, Appl. Anal. 83 (2004), no. 7, 727–733. 10.1080/00036810410001657198Suche in Google Scholar

[25] S. Saitoh, Applications of Tikhonov regularization to inverse problems using reproducing kernels, J. Phys. 73 (2007), Article ID 012019. 10.1088/1742-6596/73/1/012019Suche in Google Scholar

[26] F. Soltani, Reproducing inversion formulas for the Dunkl–Wigner transforms, Cubo 17 (2015), no. 2, 1–14. 10.4067/S0719-06462015000200001Suche in Google Scholar

[27] F. Soltani, Uncertainty principles for the Dunkl–Wigner transforms, J. Oper. 2016 (2016), Article ID 7637346. 10.1155/2016/7637346Suche in Google Scholar

[28] F. Soltani, The Dunkl–Wigner transforms on the real line, J. Nonlinear Funct. Anal. 2017 (2017), Article ID 24. 10.23952/jnfa.2017.24Suche in Google Scholar

[29] K. Trimèche, Transformation intégrale de Weyl et théorème de Paley–Wiener associés à un opérateur différentiel singulier sur ( 0 , ) , J. Math. Pures Appl. (9) 60 (1981), no. 1, 51–98. Suche in Google Scholar

[30] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Math. Libr., Cambridge University, Cambridge, 1995. Suche in Google Scholar

[31] M. W. Wong, Localization Operators, Lect. Notes Ser. 47, Seoul National University, Seoul, 1999. Suche in Google Scholar

Received: 2022-09-22
Revised: 2022-12-15
Accepted: 2022-12-21
Published Online: 2023-04-12
Published in Print: 2023-08-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2018/html?lang=de
Button zum nach oben scrollen