Abstract
In this paper, we introduce the notions of natural transformation between morphisms of quasigroupoids and between morphisms of weak Hopf quasigroups. Also, we prove that natural transformations between morphisms of finite quasigroupoids come from natural transformations between morphisms of weak Hopf quasigroups and, on the other hand, we obtain that every natural transformation for morphisms defined between pointed cosemisimple weak Hopf quasigroups comes from a natural transformation between finite quasigroupoids.
Funding source: Ministerio de Ciencia e Innovación
Award Identifier / Grant number: PID2020-115155GB-I00
Funding statement: The author was supported by Ministerio de Ciencia e Innovación of Spain, Agencia Estatal de Investigación, Unión Europea – Fondo Europeo de Desarrollo Regional (FEDER), Grant PID2020-115155GB-I00: Homología, homotopía e invariantes categóricos en grupos y álgebras no asociativas.
References
[1] E. Abe, Hopf Algebras, Cambridge Tracts in Math. 74, Cambridge University, Cambridge, 1980. Search in Google Scholar
[2] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, A characterization of weak Hopf (co) quasigroups, Mediterr. J. Math. 13 (2016), no. 5, 3747–3764. 10.1007/s00009-016-0712-xSearch in Google Scholar
[3] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Cleft and Galois extensions associated with a weak Hopf quasigroup, J. Pure Appl. Algebra 220 (2016), no. 3, 1002–1034. 10.1016/j.jpaa.2015.08.005Search in Google Scholar
[4] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Weak Hopf quasigroups, Asian J. Math. 20 (2016), no. 4, 665–693. 10.4310/AJM.2016.v20.n4.a4Search in Google Scholar
[5] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Quasigroupoids and weak Hopf quasigroups, J. Algebra 568 (2021), 408–436. 10.1016/j.jalgebra.2020.10.011Search in Google Scholar
[6] J. Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar, Springer, Berlin (1967), 1–77. 10.1007/BFb0074299Search in Google Scholar
[7] G. Böhm, J. Gómez-Torrecillas and E. López-Centella, On the category of weak bialgebras, J. Algebra 399 (2014), 801–844. 10.1016/j.jalgebra.2013.09.032Search in Google Scholar
[8]
G. Böhm, F. Nill and K. Szlachányi,
Weak Hopf algebras. I. Integral theory and
[9] H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes, Math. Ann. 96 (1927), no. 1, 360–366. 10.1007/BF01209171Search in Google Scholar
[10] R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354. 10.1090/S0002-9947-1946-0017288-3Search in Google Scholar
[11] O. Chein, Moufang loops of small order. I, Trans. Amer. Math. Soc. 188 (1974), 31–51. 10.1090/S0002-9947-1974-0330336-3Search in Google Scholar
[12] S. Eilenberg and S. MacLane, Natural isomorphisms in group theory, Proc. Natl. Acad. Sci. USA 28 (1942), 537–543. 10.1073/pnas.28.12.537Search in Google Scholar PubMed PubMed Central
[13] S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231–294. 10.1090/S0002-9947-1945-0013131-6Search in Google Scholar
[14] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. 10.4007/annals.2005.162.581Search in Google Scholar
[15] J. Grabowski, An introduction to loopoids, Comment. Math. Univ. Carolin. 57 (2016), no. 4, 515–526. 10.14712/1213-7243.2015.184Search in Google Scholar
[16] J. Grabowski and Z. Ravanpak, Nonassociative analogs of Lie groupoids, Differential Geom. Appl. 82 (2022), Paper No. 101887. 10.1016/j.difgeo.2022.101887Search in Google Scholar
[17] P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math. Soc. 242 (1978), 1–33. 10.1090/S0002-9947-1978-0496796-6Search in Google Scholar
[18] T. Hayashi, Face algebras. I. A generalization of quantum group theory, J. Math. Soc. Japan 50 (1998), no. 2, 293–315. 10.2969/jmsj/05020293Search in Google Scholar
[19] J. Klim and S. Majid, Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), no. 11, 3067–3110. 10.1016/j.jalgebra.2010.03.011Search in Google Scholar
[20] D. Nikshych and L. Vainerman, Finite quantum groupoids and their applications, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ. 43, Cambridge University, Cambridge (2002), 211–262. Search in Google Scholar
[21] T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid algebras, J. Algebra 163 (1994), no. 1, 9–50. 10.1006/jabr.1994.1002Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The Wigner transformation associated with the Hankel multidimensional operator
- Index for generalized Fredholm operators and generalized perturbation theory
- One-radius theorem for harmonic tempered distributions
- Optimal convergence factors for general Fourier coefficients
- Natural transformations for quasigroupoids
- Numerical solution for a nonlinear diffusion model with source terms
- Multiplicative (generalized)-reverse derivations in rings and Banach algebras
- Variational approach of p-Laplacian impulsive differential equations with periodic conditions
- Solvable groups with four conjugacy classes outside a normal subgroup
- Quadratic-phase orthonormal wavelets
- Uncertainty inequality on weighted Hardy spaces
- Faithful representations of the Galilean Lie algebra in two spatial dimensions
- Weighted composition operators from Dirichlet–Zygmund-type spaces into Stević-type spaces
Articles in the same Issue
- Frontmatter
- The Wigner transformation associated with the Hankel multidimensional operator
- Index for generalized Fredholm operators and generalized perturbation theory
- One-radius theorem for harmonic tempered distributions
- Optimal convergence factors for general Fourier coefficients
- Natural transformations for quasigroupoids
- Numerical solution for a nonlinear diffusion model with source terms
- Multiplicative (generalized)-reverse derivations in rings and Banach algebras
- Variational approach of p-Laplacian impulsive differential equations with periodic conditions
- Solvable groups with four conjugacy classes outside a normal subgroup
- Quadratic-phase orthonormal wavelets
- Uncertainty inequality on weighted Hardy spaces
- Faithful representations of the Galilean Lie algebra in two spatial dimensions
- Weighted composition operators from Dirichlet–Zygmund-type spaces into Stević-type spaces