Home Natural transformations for quasigroupoids
Article
Licensed
Unlicensed Requires Authentication

Natural transformations for quasigroupoids

  • Ramón González Rodríguez ORCID logo EMAIL logo
Published/Copyright: May 3, 2023
Become an author with De Gruyter Brill

Abstract

In this paper, we introduce the notions of natural transformation between morphisms of quasigroupoids and between morphisms of weak Hopf quasigroups. Also, we prove that natural transformations between morphisms of finite quasigroupoids come from natural transformations between morphisms of weak Hopf quasigroups and, on the other hand, we obtain that every natural transformation for morphisms defined between pointed cosemisimple weak Hopf quasigroups comes from a natural transformation between finite quasigroupoids.

MSC 2020: 20N05; 16T05; 17A01

Award Identifier / Grant number: PID2020-115155GB-I00

Funding statement: The author was supported by Ministerio de Ciencia e Innovación of Spain, Agencia Estatal de Investigación, Unión Europea – Fondo Europeo de Desarrollo Regional (FEDER), Grant PID2020-115155GB-I00: Homología, homotopía e invariantes categóricos en grupos y álgebras no asociativas.

References

[1] E. Abe, Hopf Algebras, Cambridge Tracts in Math. 74, Cambridge University, Cambridge, 1980. Search in Google Scholar

[2] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, A characterization of weak Hopf (co) quasigroups, Mediterr. J. Math. 13 (2016), no. 5, 3747–3764. 10.1007/s00009-016-0712-xSearch in Google Scholar

[3] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Cleft and Galois extensions associated with a weak Hopf quasigroup, J. Pure Appl. Algebra 220 (2016), no. 3, 1002–1034. 10.1016/j.jpaa.2015.08.005Search in Google Scholar

[4] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Weak Hopf quasigroups, Asian J. Math. 20 (2016), no. 4, 665–693. 10.4310/AJM.2016.v20.n4.a4Search in Google Scholar

[5] J. N. Alonso Álvarez, J. M. Fernández Vilaboa and R. González Rodríguez, Quasigroupoids and weak Hopf quasigroups, J. Algebra 568 (2021), 408–436. 10.1016/j.jalgebra.2020.10.011Search in Google Scholar

[6] J. Bénabou, Introduction to bicategories, Reports of the Midwest Category Seminar, Springer, Berlin (1967), 1–77. 10.1007/BFb0074299Search in Google Scholar

[7] G. Böhm, J. Gómez-Torrecillas and E. López-Centella, On the category of weak bialgebras, J. Algebra 399 (2014), 801–844. 10.1016/j.jalgebra.2013.09.032Search in Google Scholar

[8] G. Böhm, F. Nill and K. Szlachányi, Weak Hopf algebras. I. Integral theory and C * -structure, J. Algebra 221 (1999), no. 2, 385–438. 10.1006/jabr.1999.7984Search in Google Scholar

[9] H. Brandt, Über eine Verallgemeinerung des Gruppenbegriffes, Math. Ann. 96 (1927), no. 1, 360–366. 10.1007/BF01209171Search in Google Scholar

[10] R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354. 10.1090/S0002-9947-1946-0017288-3Search in Google Scholar

[11] O. Chein, Moufang loops of small order. I, Trans. Amer. Math. Soc. 188 (1974), 31–51. 10.1090/S0002-9947-1974-0330336-3Search in Google Scholar

[12] S. Eilenberg and S. MacLane, Natural isomorphisms in group theory, Proc. Natl. Acad. Sci. USA 28 (1942), 537–543. 10.1073/pnas.28.12.537Search in Google Scholar PubMed PubMed Central

[13] S. Eilenberg and S. MacLane, General theory of natural equivalences, Trans. Amer. Math. Soc. 58 (1945), 231–294. 10.1090/S0002-9947-1945-0013131-6Search in Google Scholar

[14] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. (2) 162 (2005), no. 2, 581–642. 10.4007/annals.2005.162.581Search in Google Scholar

[15] J. Grabowski, An introduction to loopoids, Comment. Math. Univ. Carolin. 57 (2016), no. 4, 515–526. 10.14712/1213-7243.2015.184Search in Google Scholar

[16] J. Grabowski and Z. Ravanpak, Nonassociative analogs of Lie groupoids, Differential Geom. Appl. 82 (2022), Paper No. 101887. 10.1016/j.difgeo.2022.101887Search in Google Scholar

[17] P. Hahn, Haar measure for measure groupoids, Trans. Amer. Math. Soc. 242 (1978), 1–33. 10.1090/S0002-9947-1978-0496796-6Search in Google Scholar

[18] T. Hayashi, Face algebras. I. A generalization of quantum group theory, J. Math. Soc. Japan 50 (1998), no. 2, 293–315. 10.2969/jmsj/05020293Search in Google Scholar

[19] J. Klim and S. Majid, Hopf quasigroups and the algebraic 7-sphere, J. Algebra 323 (2010), no. 11, 3067–3110. 10.1016/j.jalgebra.2010.03.011Search in Google Scholar

[20] D. Nikshych and L. Vainerman, Finite quantum groupoids and their applications, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ. 43, Cambridge University, Cambridge (2002), 211–262. Search in Google Scholar

[21] T. Yamanouchi, Duality for generalized Kac algebras and a characterization of finite groupoid algebras, J. Algebra 163 (1994), no. 1, 9–50. 10.1006/jabr.1994.1002Search in Google Scholar

Received: 2022-07-01
Revised: 2022-09-12
Accepted: 2022-10-20
Published Online: 2023-05-03
Published in Print: 2023-08-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/gmj-2023-2025/html
Scroll to top button