Abstract
In this paper, we study the existence and attractivity of solutions for an implicit differential equation with composite fractional derivative. By means of Schauder’s fixed point theorem, sufficient conditions for the main results are investigated. An example is presented to illustrate our theory
References
[1] S. Abbas, W. Albarakati and M. Benchohra, Existence and attractivity results for Volterra type nonlinear multi-delay Hadamard–Stieltjes fractional integral equations, PanAmer. Math. J. 26 (2016), no. 1, 1–17. Suche in Google Scholar
[2] S. Abbas and M. Benchohra, On the existence and local asymptotic stability of solutions of fractional order integral equations, Comment. Math. 52 (2012), no. 1, 91–100. Suche in Google Scholar
[3] S. Abbas and M. Benchohra, Global asymptotic stability for nonlinear multi-delay differential equations of fractional order, Proc. A. Razmadze Math. Inst. 161 (2013), 1–13. Suche in Google Scholar
[4] S. Abbas, M. Benchohra and M. A. Darwish, Asymptotic stability for implicit differential equations involving Hilfer fractional derivative, PanAmer. Math. J. 27 (2017), no. 3, 40–52. Suche in Google Scholar
[5] S. Abbas, M. Benchohra and T. Diagana, Existence and attractivity results for some fractional order partial integro-differential equations with delay, Afr. Diaspora J. Math. 15 (2013), no. 2, 87–100. Suche in Google Scholar
[6] S. Abbas, M. Benchohra and J. Henderson, Asymptotic attractive nonlinear fractional order Riemann–Liouville integral equations in Banach algebras, Nonlinear Stud. 20 (2013), no. 1, 95–104. Suche in Google Scholar
[7] M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl. 338 (2008), no. 2, 1340–1350. 10.1016/j.jmaa.2007.06.021Suche in Google Scholar
[8] K. M. Furati, M. D. Kassim and N. E. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl. 64 (2012), no. 6, 1616–1626. 10.1016/j.camwa.2012.01.009Suche in Google Scholar
[9] K. M. Furati, M. D. Kassim and N.-E. Tatar, Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations 2013 (2013), Paper No. 235. Suche in Google Scholar
[10] H. Gu and J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput. 257 (2015), 344–354. 10.1016/j.amc.2014.10.083Suche in Google Scholar
[11] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, River Edge, 2000. 10.1142/3779Suche in Google Scholar
[12] R. Hilfer, Threefold introduction to fractional derivatives, Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008), 17–73. 10.1002/9783527622979.ch2Suche in Google Scholar
[13] R. Hilfer, Y. Luchko and Ž. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives, Fract. Calc. Appl. Anal. 12 (2009), no. 3, 299–318. Suche in Google Scholar
[14] I. Podlubny, Fractional Differential Equations. Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Math. Sci. Eng. 198, Academic Press, San Diego, 1999. Suche in Google Scholar
[15] H. L. Tidke and R. P. Mahajan, Existence and uniqueness of nonlinear implicit fractional differential equation with Riemann–Liouville derivative, Am. J. Comput. Appl. Math 7 (2017), no. 2, 46–50. Suche in Google Scholar
[16] J. Vanterler da C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72–91. 10.1016/j.cnsns.2018.01.005Suche in Google Scholar
[17] J. Vanterler da C. Sousa and E. Capelas de Oliveira, Leibniz type rule: ψ-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul. 77 (2019), 305–311. 10.1016/j.cnsns.2019.05.003Suche in Google Scholar
[18] J. Vanterler da Costa Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator, Differ. Equ. Appl. 11 (2019), no. 1, 87–106. 10.7153/dea-2019-11-02Suche in Google Scholar
[19] D. Vivek, K. Kanagarajan and E. M. Elsayed, Nonlocal initial value problems for implicit differential equations with Hilfer–Hadamard fractional derivative, Nonlinear Anal. Model. Control 23 (2018), no. 3, 341–360. 10.15388/NA.2018.3.4Suche in Google Scholar
[20] D. Vivek, K. Kanagarajan and E. M. Elsayed, Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions, Mediterr. J. Math. 15 (2018), no. 1, Paper No. 15. 10.1007/s00009-017-1061-0Suche in Google Scholar
[21] D. Vivek, K. Kanagarajan and S. Sivasundaram, Dynamics and stability of pantograph equations via Hilfer fractional derivative, Nonlinear Stud. 23 (2016), no. 4, 685–698. Suche in Google Scholar
[22] D. Vivek, K. Kanagarajan and S. Sivasundaram, Dynamics and stability results for Hilfer fractional type thermistor problem, Fract. Fractional 1 (2017), Paper No. 5. 10.3390/fractalfract1010005Suche in Google Scholar
[23] D. Vivek, K. Kanagarajan and S. Sivasundaram, Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative, Nonlinear Stud. 24 (2017), no. 3, 699–712. 10.5899/2017/jnaa-00370Suche in Google Scholar
[24] J. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput. 266 (2015), 850–859. 10.1016/j.amc.2015.05.144Suche in Google Scholar
[25] Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics 10 (2022), no. 6, Paper No. 900. 10.3390/math10060900Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- On the well-posedness of nonlocal boundary value problems for a class of systems of linear generalized differential equations with singularities
- Products of Toeplitz operators with angular symbols
- Characterization of Lie-type higher derivations of triangular rings
- On classifying map of the integral Krichever–Hoehn formal group law
- Demicompactness perturbation in Banach algebras and some stability results
- On bicomplex 𝔹ℂ-modules lp 𝕜(𝔹ℂ) and some of their geometric properties
- On a class of nonlinear degenerate elliptic equations in weighted Sobolev spaces
- Asymptotic behaviors of solutions of a class of time-varying differential equations
- Fekete–Szegő problem of strongly α-close-to-convex functions associated with generalized fractional operator
- Some properties of Vitali sets
- Optimal conditions of solvability of periodic problem for systems of differential equations with argument deviation
- Generalized derivations with Engel condition on Lie ideals of prime rings
- Attractivity of implicit differential equations with composite fractional derivative
- Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations
Artikel in diesem Heft
- Frontmatter
- On the well-posedness of nonlocal boundary value problems for a class of systems of linear generalized differential equations with singularities
- Products of Toeplitz operators with angular symbols
- Characterization of Lie-type higher derivations of triangular rings
- On classifying map of the integral Krichever–Hoehn formal group law
- Demicompactness perturbation in Banach algebras and some stability results
- On bicomplex 𝔹ℂ-modules lp 𝕜(𝔹ℂ) and some of their geometric properties
- On a class of nonlinear degenerate elliptic equations in weighted Sobolev spaces
- Asymptotic behaviors of solutions of a class of time-varying differential equations
- Fekete–Szegő problem of strongly α-close-to-convex functions associated with generalized fractional operator
- Some properties of Vitali sets
- Optimal conditions of solvability of periodic problem for systems of differential equations with argument deviation
- Generalized derivations with Engel condition on Lie ideals of prime rings
- Attractivity of implicit differential equations with composite fractional derivative
- Exponentially fitted difference scheme for singularly perturbed mixed integro-differential equations