Startseite q-dual mixed volumes and Lp-intersection bodies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

q-dual mixed volumes and Lp-intersection bodies

  • Chang-Jian Zhao EMAIL logo und Wing-Sum Cheung
Veröffentlicht/Copyright: 1. Juni 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, we introduce the new notions of Lp-intersection and mixed intersection bodies. Inequalities for the q-dual volume sum of Lp-mixed intersection bodies are established.

MSC 2010: 52A40

Award Identifier / Grant number: 11371334

Funding statement: The first author was supported by the Natural Science Foundation of China (11371334). The second author was partially supported by the National Natural Science Foundation of China (11371334) and an HKU seed grant for basic research.

Acknowledgements

The authors express their gratitude to the referee for his many excellent suggestions and comments. The first author expresses also his thanks to Professor Gang-Song Leng for his very valuable help.

References

[1] H. Busemann, Volume in terms of concurrent cross-sections, Pacific J. Math. 3 (1953), 1–12. 10.2140/pjm.1953.3.1Suche in Google Scholar

[2] S. Campi, Stability estimates for star bodies in terms of their intersection bodies, Mathematika 45 (1998), no. 2, 287–303. 10.1112/S0025579300014212Suche in Google Scholar

[3] S. Campi, Convex intersection bodies in three and four dimensions, Mathematika 46 (1999), no. 1, 15–27. 10.1112/S002557930000752XSuche in Google Scholar

[4] H. Fallert, P. Goodey and W. Weil, Spherical projections and centrally symmetric sets, Adv. Math. 129 (1997), no. 2, 301–322. 10.1006/aima.1997.1657Suche in Google Scholar

[5] R. J. Gardner, A positive answer to the Busemann–Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), no. 2, 435–447. 10.2307/2118606Suche in Google Scholar

[6] R. J. Gardner, Intersection bodies and the Busemann–Petty problem, Trans. Amer. Math. Soc. 342 (1994), no. 1, 435–445. 10.1090/S0002-9947-1994-1201126-7Suche in Google Scholar

[7] R. J. Gardner, On the Busemann–Petty problem concerning central sections of centrally symmetric convex bodies, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 2, 222–226. 10.1090/S0273-0979-1994-00493-8Suche in Google Scholar

[8] R. J. Gardner, Geometric Tomography, Encyclopedia Math. Appl. 58, Cambridge University Press, Cambridge, 1995. Suche in Google Scholar

[9] R. J. Gardner, A. Koldobsky and T. Schlumprecht, An analytic solution to the Busemann–Petty problem, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 1, 29–34. 10.1016/S0764-4442(99)80007-XSuche in Google Scholar

[10] R. J. Gardner, A. Koldobsky and T. Schlumprecht, An analytic solution to the Busemann–Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703. 10.2307/120978Suche in Google Scholar

[11] P. Goodey, E. Lutwak and W. Weil, Functional analytic characterizations of classes of convex bodies, Math. Z. 222 (1996), no. 3, 363–381. 10.1007/BF02621871Suche in Google Scholar

[12] P. Goodey and W. Weil, Intersection bodies and ellipsoids, Mathematika 42 (1995), no. 2, 295–304. 10.1112/S0025579300014601Suche in Google Scholar

[13] E. Grinberg and G. Zhang, Convolutions, transforms, and convex bodies, Proc. Lond. Math. Soc. (3) 78 (1999), no. 1, 77–115. 10.1112/S0024611599001653Suche in Google Scholar

[14] C. Haberl, Star body valued valuations, Indiana Univ. Math. J. 58 (2009), no. 5, 2253–2276. 10.1512/iumj.2009.58.3685Suche in Google Scholar

[15] C. Haberl and M. Ludwig, A characterization of Lp intersection bodies, Int. Math. Res. Not. IMRN 2006 (2006), Article ID 10548. 10.1155/IMRN/2006/10548Suche in Google Scholar

[16] C. Haberl and L. Parapatits, Valuations and surface area measures, J. Reine Angew. Math. 687 (2014), 225–245. 10.1515/crelle-2012-0044Suche in Google Scholar

[17] C. Haberl and F. E. Schuster, General Lp affine isoperimetric inequalities, J. Differential Geom. 83 (2009), no. 1, 1–26. 10.4310/jdg/1253804349Suche in Google Scholar

[18] A. Koldobsky, Intersection bodies and the Busemann–Petty problem, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 11, 1181–1186. 10.1016/S0764-4442(97)83550-1Suche in Google Scholar

[19] A. Koldobsky, Intersection bodies, positive definite distributions, and the Busemann–Petty problem, Amer. J. Math. 120 (1998), no. 4, 827–840. 10.1353/ajm.1998.0030Suche in Google Scholar

[20] A. Koldobsky, Intersection bodies in 𝐑4, Adv. Math. 136 (1998), no. 1, 1–14. 10.1006/aima.1998.1718Suche in Google Scholar

[21] A. Koldobsky, Second derivative test for intersection bodies, Adv. Math. 136 (1998), no. 1, 15–25. 10.1006/aima.1998.1719Suche in Google Scholar

[22] A. Koldobsky, A functional analytic approach to intersection bodies, Geom. Funct. Anal. 10 (2000), no. 6, 1507–1526. 10.1007/PL00001659Suche in Google Scholar

[23] K. Leichtweiß, Affine Geometry of Convex Bodies, Johann Ambrosius Barth, Heidelberg, 1998. Suche in Google Scholar

[24] M. Ludwig, Intersection bodies and valuations, Amer. J. Math. 128 (2006), no. 6, 1409–1428. 10.1353/ajm.2006.0046Suche in Google Scholar

[25] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538. 10.2140/pjm.1975.58.531Suche in Google Scholar

[26] E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), no. 1, 91–105. 10.1090/S0002-9947-1985-0766208-7Suche in Google Scholar

[27] E. Lutwak, Volume of mixed bodies, Trans. Amer. Math. Soc. 294 (1986), no. 2, 487–500. 10.1090/S0002-9947-1986-0825717-3Suche in Google Scholar

[28] E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), no. 2, 232–261. 10.1016/0001-8708(88)90077-1Suche in Google Scholar

[29] E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), no. 2, 901–916. 10.1090/S0002-9947-1993-1124171-8Suche in Google Scholar

[30] M. Moszyńska, Quotient star bodies, intersection bodies, and star duality, J. Math. Anal. Appl. 232 (1999), no. 1, 45–60. 10.1006/jmaa.1998.6238Suche in Google Scholar

[31] W. Y. Yu, D. H. Wu and G. S. Leng, Quasi Lp-intersection bodies, Acta Math. Sin. (Engl. Ser.) 23 (2007), no. 11, 1937–1948. 10.1007/s10114-007-0958-0Suche in Google Scholar

[32] G. Zhang, Intersection bodies and the four-dimensional Busemann–Petty problem, Int. Math. Res. Not. IMRN 1993 (1993), no. 7, 233–240. 10.1155/S107379289300025XSuche in Google Scholar

[33] G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777–801. 10.1090/S0002-9947-1994-1254193-9Suche in Google Scholar

[34] G. Zhang, Intersection bodies and the Busemann–Petty inequalities in 𝐑4, Ann. of Math. (2) 140 (1994), no. 2, 331–346. 10.2307/2118603Suche in Google Scholar

[35] G. Zhang, Sections of convex bodies, Amer. J. Math. 118 (1996), no. 2, 319–340. 10.1353/ajm.1996.0021Suche in Google Scholar

[36] G. Zhang, A positive solution to the Busemann–Petty problem in 𝐑4, Ann. of Math. (2) 149 (1999), no. 2, 535–543. 10.2307/120974Suche in Google Scholar

[37] G. Zhang, Intersection bodies and polytopes, Mathematika 46 (1999), no. 1, 29–34. 10.1112/S0025579300007531Suche in Google Scholar

[38] C. J. Zhao, Lp-dual quermassintegral sums, Sci. China Ser. A 50 (2007), no. 9, 1347–1360. 10.1007/s11425-007-0117-1Suche in Google Scholar

[39] C. J. Zhao, Lp-mixed intersection bodies, Sci. China Ser. A 51 (2008), no. 12, 2172–2188. 10.1007/s11425-008-0074-3Suche in Google Scholar

Received: 2015-01-30
Revised: 2015-06-29
Accepted: 2015-07-20
Published Online: 2017-06-01
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 27.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2017-0023/pdf
Button zum nach oben scrollen