Startseite On the generalized absolute convergence of Fourier series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the generalized absolute convergence of Fourier series

  • Rusudan Meskhia EMAIL logo
Veröffentlicht/Copyright: 14. November 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present paper the sufficient conditions are obtained for the generalized r-absolute convergence (0<r<2) of the single Fourier trigonometric series in terms of the modulus of δ-variation of a function. It is proved that these conditions are unimprovable in a certain sense. The classical results of Berstein, Szasz, Zygmund and others, related to the absolute convergence of single trigonometric Fourier series, were previously generalized by [L. Gogoladze and R. Meskhia, On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. 141 2006, 29–40].

MSC 2010: 42A20; 26A16

References

[1] N. K. Bari, Trigonometric Series (in Russian), Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961. Suche in Google Scholar

[2] Z. A. Chanturia, The moduli of variation of a function and its applications in the theory of Fourier series (in Russian), Dokl. Akad. Nauk SSSR 214 (1974), 63–66; translation in Sov. Math. Dokl. 15 (1974), 67–71. Suche in Google Scholar

[3] Z. A. Chanturia, On the absolute convergence of Fourier series of the classes HωV[v], Pacific J. Math. 96 (1981), no. 1, 37–61. 10.2140/pjm.1981.96.37Suche in Google Scholar

[4] L. Gogoladze and R. Meskhia, On the absolute convergence of trigonometric Fourier series, Proc. A. Razmadze Math. Inst. 141 (2006), 29–40. Suche in Google Scholar

[5] L. D. Gogoladze, Uniform strong summation of multiple trigonometric Fourier series (in Russian), Reports of the Extended Sessions of a Seminar of the I. N. Vekua Institute of Applied Mathematics. Vol. I, No. 2 (Tbilisi 1985), Tbilis. Gos. Univ., Tbilisi (1985), 48–51, 179. Suche in Google Scholar

[6] T. Karchava, On the absolute convergence of Fourier series, Georgian Math. J. 4 (1997), no. 4, 333–340. 10.1023/A:1022990412102Suche in Google Scholar

[7] F. Móricz and A. Veres, Absolute convergence of multiple Fourier series revisited, Anal. Math. 34 (2008), no. 2, 145–162. 10.1007/s10476-008-0205-7Suche in Google Scholar

[8] P. L. Ul’janov, Series with respect to a Haar system with monotone coefficients (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 925–950. Suche in Google Scholar

[9] A. Zygmund, Remarque Sur la Convergence Absolue des Series de Fourier, J. Lond. Math. Soc. 3 (1928), no. 3, 194–196. 10.1112/jlms/s1-3.3.194Suche in Google Scholar

[10] A. Zygmund, Some points in the theory of trigonometric and power series, Trans. Amer. Math. Soc. 36 (1934), no. 3, 586–617. 10.1090/S0002-9947-1934-1501757-2Suche in Google Scholar

Received: 2016-07-22
Revised: 2017-03-21
Accepted: 2017-03-27
Published Online: 2018-11-14
Published in Print: 2019-03-01

© 2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 29.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/gmj-2018-0074/html
Button zum nach oben scrollen