Startseite A high-gain dual-beam folded transmit-reflect-array antenna based on phase-shifting surface
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A high-gain dual-beam folded transmit-reflect-array antenna based on phase-shifting surface

  • Min Zhang , Baiqing Tang EMAIL logo , Xin Li , Peng Jiang , Wei Hu , Wen Jiang und Steven Gao
Veröffentlicht/Copyright: 25. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, a high-gain dual-beam folded transmit-reflect-array antenna is designed based on the shared aperture method. It consists of the top transmit-reflect-array, the bottom transmitarray, and the feed horn located at the center of the bottom transmitarray. A phase-shifting surface is proposed as the transmission unit cell capable of transmitting incident waves while providing adequate transmission phase shift. The designed transmission unit cell is improved into the transmit-reflect unit cell by adding polarization grids to realize the reflection function. The bottom transmitarray is constructed by transmission unit cells. The top transmit-reflect-array is composed of transmit-reflect unit cells and polarization grids vertical to the unit cell. The x-polarized wave transmits through the top transmit-reflect-array and forms a pencil beam in the forward direction. In addition, the y-polarized wave is reflected by the top transmit-reflect-array and transmits through the bottom transmitarray to form a pencil beam in the backward direction. The tested realized gains of the transmitted beam and reflected beam at 10 GHz are 19.87 dBi with an aperture efficiency of 48.27 % and 23.95 dBi with an aperture efficiency of 30.88 %, respectively. With its low profile and ease of manufacture, it has great prospects for navigation and radar communication.


Corresponding author: Baiqing Tang, National Key Laboratory of Antennas and Microwave Technology, Xidian University, Xi’an, 710071, China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

  3. Research funding: None declared.

References

[1] R. Pokuls, J. Uher, and D. M. Pozar, “Microstrip antennas for SAR applications,” IEEE Trans. Antennas Propag., vol. 46, no. 9, pp. 1289–1296, 1998, https://doi.org/10.1109/8.719972.Suche in Google Scholar

[2] T. Smith, U. Gothelf, O. S. Kim, and O. Breinbjerg, “An FSS-backed 20/30 GHz circularly polarized reflectarray for a shared aperture L- and Ka-band satellite communication antenna,” IEEE Trans. Antennas Propag., vol. 62, no. 2, pp. 661–668, 2014, https://doi.org/10.1109/tap.2013.2292692.Suche in Google Scholar

[3] R. Deng, S. Xu, F. Yang, and M. Li, “An FSS-backed Ku/Ka quad-band reflectarray antenna for satellite communications,” IEEE Trans. Antennas Propag., vol. 66, no. 8, pp. 4353–4358, 2018, https://doi.org/10.1109/tap.2018.2835725.Suche in Google Scholar

[4] A. Aziz, X. Zhang, F. Yang, S. Xu, and M. Li, “A dual-band orthogonally polarized contour beam transmitarray design,” IEEE Trans. Antennas Propag., vol. 69, no. 8, pp. 4538–4545, 2021, https://doi.org/10.1109/tap.2020.3048513.Suche in Google Scholar

[5] Y. Liu, Y. Cheng, M. H. Zhao, and Y. Fan, “Dual-band shared-aperture high-efficiency reflectarray antenna based on structure-reuse technique,” IEEE Antennas Wirel. Propag. Lett., vol. 20, no. 3, pp. 366–370, 2021, https://doi.org/10.1109/lawp.2021.3050204.Suche in Google Scholar

[6] R. S. Hao, Y. J. Cheng, Y. F. Wu, and Y. Fan, “A W-band low-profile dual-polarized reflectarray with integrated feed for in-band full-duplex application,” IEEE Trans. Antennas Propag., vol. 69, no. 11, pp. 7222–7230, 2021, https://doi.org/10.1109/tap.2021.3109641.Suche in Google Scholar

[7] J. Zhu, Y. Yang, Z. Hou, S. Liao, and Q. Xue, “Dual-band aperture-shared high gain antenna for millimeter-wave multi-beam and sub-6 GHz communication applications,” IEEE Trans. Antennas Propag., vol. 70, no. 6, pp. 4848–4853, 2022, https://doi.org/10.1109/tap.2021.3137429.Suche in Google Scholar

[8] X. Tong, Z. H. Jiang, Y. Li, F. Wu, R. Sauleau, and W. Hong, “Dual-wideband dual-circularly-polarized shared-aperture reflectarrays with a single functional substrate for K-/Ka-band applications,” IEEE Trans. Antennas Propag., vol. 70, no. 7, pp. 5404–5417, 2022, https://doi.org/10.1109/tap.2022.3145484.Suche in Google Scholar

[9] D. E. Serup, G. F. Pedersen, and S. Zhang, “Dual-band shared aperture reflectarray and patch antenna array for S- and Ka-bands,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 2340–2345, 2022, https://doi.org/10.1109/tap.2021.3111171.Suche in Google Scholar

[10] J. Zhu, Y. Yang, S. Liao, and Q. Xue, “Dual-band antenna hybridizing folded transmitarray and folded reflectarray,” IEEE Trans. Antennas Propag., vol. 70, no. 4, pp. 3070–3075, 2022, https://doi.org/10.1109/tap.2021.3137165.Suche in Google Scholar

[11] H. A. E. A. Malhat, M. M. Badawy, S. H. Zainud-Deen, and K. H. Awadalla, “Dual-mode plasma reflectarray/transmitarray antennas,” IEEE Trans. Plasma Sci., vol. 43, no. 10, pp. 3582–3589, 2015, https://doi.org/10.1109/tps.2015.2440237.Suche in Google Scholar

[12] H. X. Xu, S. Tang, G. M. Wang, et al.., “Multifunctional microstrip array combining a linear polarizer and focusing metasurface,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3676–3682, 2016, https://doi.org/10.1109/tap.2016.2565742.Suche in Google Scholar

[13] F. Yang, R. Deng, S. Xu, and M. Li, “Design and experiment of a near-zero-thickness high-gain transmit-reflect-array antenna using anisotropic metasurface,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 2853–2861, 2018, https://doi.org/10.1109/tap.2018.2820320.Suche in Google Scholar

[14] T. Cai, G. M. Wang, X. L. Fu, J. G. Liang, and Y. Q. Zhuang, “High-efficiency metasurface with polarization-dependent transmission and reflection properties for both reflectarray and transmitarray,” IEEE Trans. Antennas Propag., vol. 66, no. 6, pp. 3219–3224, 2018, https://doi.org/10.1109/tap.2018.2817285.Suche in Google Scholar

[15] X. Zhong, H. X. Xu, L. Chen, W. Li, H. Wang, and X. Shi, “An FSS-backed broadband phase-shifting surface array with multimode operation,” IEEE Trans. Antennas Propag., vol. 67, no. 9, pp. 5974–5981, 2019, https://doi.org/10.1109/tap.2019.2916747.Suche in Google Scholar

[16] M. Wang, S. Xu, F. Yang, and M. Li, “A 1-bit bidirectional reconfigurable transmit-reflect-array using a single-layer slot element with pin diodes,” IEEE Trans. Antennas Propag., vol. 67, no. 9, pp. 6205–6210, 2019, https://doi.org/10.1109/tap.2019.2925925.Suche in Google Scholar

[17] S. L. Liu, X. Q. Lin, Y. H. Yan, and Y. L. Fan, “Generation of a high-gain bidirectional transmit–reflect-array antenna with asymmetric beams using sparse-array method,” IEEE Trans. Antennas Propag., vol. 69, no. 9, pp. 6087–6092, 2021, https://doi.org/10.1109/tap.2021.3069481.Suche in Google Scholar

[18] H. Y. Lei, Y. Liu, Y. T. Jia, Z. Yue, and X. Wang, “A low-profile dual-band dual-circularly polarized folded transmitarray antenna with independent beam control,” IEEE Trans. Antennas Propag., vol. 70, no. 5, pp. 3852–3857, 2022, https://doi.org/10.1109/tap.2021.3125419.Suche in Google Scholar

Received: 2023-01-20
Accepted: 2023-08-09
Published Online: 2023-08-25
Published in Print: 2023-12-15

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/freq-2023-0023/html?lang=de
Button zum nach oben scrollen