Home Duality theorems for polyanalytic functions
Article
Licensed
Unlicensed Requires Authentication

Duality theorems for polyanalytic functions

  • Fabrizio Colombo , Antonino De Martino EMAIL logo , Kamal Diki , Irene Sabadini and Daniele C. Struppa
Published/Copyright: February 10, 2025

Abstract

The goal of this paper is to give a characterization of the dual of the space of polyanalytic functions on the complement of a compact set K and vanishing at infinity. The class of polyanalytic functions generalizes holomorphic functions and serves as a middle ground between holomorphic functions in one complex variable and those in two complex variables. The duality result is also expressed in topological terms through a new class of infinite-order differential operators, which includes well-known families of operators like the Laplace and Helmholtz operators. Since the notion of polyanalytic function generalizes that of holomorphic function, the duality theorems established in this paper can be considered a non-trivial generalization of the Köthe–Grothendieck theorem.

MSC 2020: 46E99; 46F15; 47B38

Communicated by Siegfried Echterhoff


Funding statement: The research of Kamal Diki is supported by the Research Foundation – Flanders (FWO) under grant number 1268123N.

References

[1] L. D. Abreu, Sampling and interpolation in Bargmann–Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal. 29 (2010), no. 3, 287–302. 10.1016/j.acha.2009.11.004Search in Google Scholar

[2] L. D. Abreu, Super-wavelets versus poly-Bergman spaces, Integral Equations Operator Theory 73 (2012), no. 2, 177–193. 10.1007/s00020-012-1956-xSearch in Google Scholar

[3] L. D. Abreu and H. G. Feichtinger, Function spaces of polyanalytic functions, Harmonic and Complex Analysis and its Applications, Trends Math., Birkhäuser/Springer, Cham (2014), 1–38. 10.1007/978-3-319-01806-5_1Search in Google Scholar

[4] D. Alpay, F. Colombo, K. Diki and I. Sabadini, Poly slice monogenic functions, Cauchy formulas and the PS-functional calculus, J. Operator Theory 88 (2022), no. 2, 309–364. Search in Google Scholar

[5] D. Alpay, F. Colombo, K. Diki, I. Sabadini and D. C. Struppa, Hörmander’s L 2 -method, ¯ -problem and polyanalytic function theory in one complex variable, Complex Anal. Oper. Theory 17 (2023), no. 3, Paper No. 41. 10.1007/s11785-023-01340-0Search in Google Scholar

[6] D. Alpay, F. Colombo, K. Diki, I. Sabadini and D. C. Struppa, A Hörmander–Fock space, Complex Var. Elliptic Equ. 69 (2024), no. 8, 1320–1343. 10.1080/17476933.2023.2209856Search in Google Scholar

[7] N. E. Askour, A. Intissar and Z. Mouayn, Explicit formulas for reproducing kernels of generalized Bargmann spaces of 𝐂 n , J. Math. Phys. 41 (2000), no. 5, 3057–3067. 10.1063/1.533312Search in Google Scholar

[8] M. B. Balk, Polyanalytic Functions, Math. Res. 63, Akademie-Verlag, Berlin, 1991. Search in Google Scholar

[9] M. B. Balk, Polyanalytic functions and their generalizations, Complex Analysis. I, Encyclopaedia Math. Sci. 85, Springer, Berlin (1997), 195–253. 10.1007/978-3-662-03396-8_2Search in Google Scholar

[10] H. Begehr and B. Shupeyeva, Polyanalytic boundary value problems for planar domains with harmonic Green function, Anal. Math. Phys. 11 (2021), no. 3, Paper No. 137. 10.1007/s13324-021-00569-2Search in Google Scholar

[11] F. Brackx, On ( k ) -monogenic functions of a quaternion variable, Function Theoretic Methods in Differential Equations, Res. Notes Math. 8, Pitman, London (1976), 22–44. 10.1007/BFb0087632Search in Google Scholar

[12] F. Colombo, R. S. Krausshar, S. Pinton and I. Sabadini, Entire monogenic functions of given proximate order and continuous homomorphisms, Mediterr. J. Math. 21 (2024), no. 2, Paper No. 44. 10.1007/s00009-023-02585-xSearch in Google Scholar

[13] F. Colombo, I. Sabadini, F. Sommen and D. C. Struppa, Analysis of Dirac Systems and Computational Algebra, Prog. Math. Phys. 39, Birkhäuser, Boston 2004. 10.1007/978-0-8176-8166-1Search in Google Scholar

[14] F. Colombo, I. Sabadini and D. C. Struppa, Duality theorems for slice hyperholomorphic functions, J. Reine Angew. Math. 645 (2010), 85–105. 10.1515/crelle.2010.060Search in Google Scholar

[15] A. De Martino and K. Diki, On the polyanalytic short-time Fourier transform in the quaternionic setting, Commun. Pure Appl. Anal. 21 (2022), no. 11, 3629–3665. 10.3934/cpaa.2022117Search in Google Scholar

[16] A. De Martino and S. Pinton, A polyanalytic functional calculus of order 2 on the S-spectrum, Proc. Amer. Math. Soc. 151 (2023), no. 6, 2471–2488. 10.1090/proc/16285Search in Google Scholar

[17] A. De Martino and S. Pinton, Properties of a polyanalytic functional calculus on the S-spectrum, Math. Nachr. 296 (2023), no. 11, 5190–5226. 10.1002/mana.202200318Search in Google Scholar

[18] R. Delanghe and F. Brackx, Hypercomplex function theory and Hilbert modules with reproducing kernel, Proc. Lond. Math. Soc. (3) 37 (1978), no. 3, 545–576. 10.1112/plms/s3-37.3.545Search in Google Scholar

[19] A. Fabiano, G. Gentili and D. C. Struppa, Sheaves of quaternionic hyperfunctions and microfunctions, Complex Variables Theory Appl. 24 (1994), no. 3–4, 161–184. 10.1080/17476939408814709Search in Google Scholar

[20] L. Fantappiè, Teoria de los Functionales Analyticos, Consejo Superior de Investigaciones Cientificas, Barcelona, 1943. Search in Google Scholar

[21] A. Grothendieck, Sur certains espaces de fonctions holomorphes. I, II, J. Reine Angew. Math. 192 (1953), 35–64, 77–95. 10.1515/crll.1953.192.77Search in Google Scholar

[22] A. Kaneko, Introduction to Hyperfunctions, Math. Appl. (Japanese Ser.) 3, Kluwer Academic, Dordrecht, 1988. Search in Google Scholar

[23] G. V. Kolossov, Sur les probléms d’élasticité à deux dimensions, C. R. Acad. Sci. 146 (1908), 522–525. Search in Google Scholar

[24] H. Komatsu, An introduction to the theory of hyperfunctions, Hyperfunctions and Pseudo-Differential Equations, Lecture Notes in Math. 287, Springer, Berlin (1971), 3–40. 10.1007/BFb0068144Search in Google Scholar

[25] G. Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30–49. 10.1515/crll.1953.191.30Search in Google Scholar

[26] A. Martineau, Indicatrices des fonctionelles analytiques et transfomeé de Laplace, Oeuvres de André Martineau, Éditions du Centre National de la Recherche Scientifique, Paris (1977), 595–608. Search in Google Scholar

[27] N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of elasticity, Nauka, Moscow, 1968. Search in Google Scholar

[28] I. Sabadini and D. C. Struppa, Topologies on quaternionic hyperfunctions and duality theorems, Complex Variables Theory Appl. 30 (1996), no. 1, 19–34. 10.1080/17476939608814908Search in Google Scholar

[29] N. Théodoresco, La dérivée aréolaire et ses applications à la physique mathématique, Thèses de l’entre-deux-guerres, Paris, 1931. Search in Google Scholar

[30] N. L. Vasilevski, On the structure of Bergman and poly-Bergman spaces, Integral Equations Operator Theory 33 (1999), no. 4, 471–488. 10.1007/BF01291838Search in Google Scholar

[31] N. L. Vasilevski, Commutative Algebras of Toeplitz Operators on the Bergman Space, Oper. Theory Adv. Appl. 185, Birkhäuser, Basel, 2008. 10.1090/conm/462/09065Search in Google Scholar

[32] A. V. Vasin, Polyanalytic forms on compact Riemann surfaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 247 (1997), 15–25. Search in Google Scholar

Received: 2024-01-10
Revised: 2024-10-11
Published Online: 2025-02-10
Published in Print: 2025-06-01

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2024-0022/html?lang=en
Scroll to top button