Startseite Mathematik Regularity of fractional heat semigroups associated with Schrödinger operators on Heisenberg groups
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Regularity of fractional heat semigroups associated with Schrödinger operators on Heisenberg groups

  • Chuanhong Sun , Pengtao Li ORCID logo EMAIL logo und Zengjian Lou EMAIL logo
Veröffentlicht/Copyright: 2. Januar 2024

Abstract

Let L = - Δ n + V be a Schrödinger operator on Heisenberg groups n , where Δ n is the sub-Laplacian, the nonnegative potential V belongs to the reverse Hölder class B 𝒬 / 2 . Here 𝒬 is the homogeneous dimension of n . In this article, we introduce the fractional heat semigroups { e - t L α } t > 0 , α > 0 , associated with L. By the fundamental solution of the heat equation, we estimate the gradient and the time-fractional derivatives of the fractional heat kernel K α , t L ( , ) , respectively. As an application, we characterize the space BMO L γ ( n ) via { e - t L α } t > 0 .


Communicated by Christopher D. Sogge


Award Identifier / Grant number: 12071272

Award Identifier / Grant number: ZR2020MA004

Funding statement: The research was supported by the National Natural Science Foundation of China (Grant No. 12071272) and Shandong Natural Science Foundation of China (Grant No. ZR2020MA004).

References

[1] B. Bongioanni, E. Harboure and O. Salinas, Weighted inequalities for negative powers of Schrödinger operators, J. Math. Anal. Appl. 348 (2008), no. 1, 12–27. 10.1016/j.jmaa.2008.06.045Suche in Google Scholar

[2] D.-C. Chang and J. Xiao, L q -extensions of L p -spaces by fractional diffusion equations, Discrete Contin. Dyn. Syst. 35 (2015), no. 5, 1905–1920. 10.3934/dcds.2015.35.1905Suche in Google Scholar

[3] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Math. Monogr., Oxford University, New York, 1985. Suche in Google Scholar

[4] A. Grigor’yan, Heat kernels and function theory on metric measure spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Contemp. Math. 338, American Mathematical Society, Providence (2003), 143–172. 10.1090/conm/338/06073Suche in Google Scholar

[5] D. S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), no. 4, 835–854. 10.1512/iumj.1986.35.35043Suche in Google Scholar

[6] R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator, J. Differential Equations 259 (2015), no. 8, 3495–3519. 10.1016/j.jde.2015.04.033Suche in Google Scholar

[7] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Grundlehren Math. Wiss. 132, Springer, Berlin, 1984. Suche in Google Scholar

[8] C.-C. Lin and H. Liu, BMO L ( n ) spaces and Carleson measures for Schrödinger operators, Adv. Math. 228 (2011), no. 3, 1631–1688. 10.1016/j.aim.2011.06.024Suche in Google Scholar

[9] C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations, Nonlinear Anal. 68 (2008), no. 3, 461–484. 10.1016/j.na.2006.11.011Suche in Google Scholar

[10] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Seri. 43, Princeton University, Princeton, 1993. 10.1515/9781400883929Suche in Google Scholar

[11] S. Thangavelu, Riesz transforms and the wave equation for the Hermite operator, Comm. Partial Differential Equations 15 (1990), no. 8, 1199–1215. 10.1080/03605309908820720Suche in Google Scholar

[12] S. Thangavelu, Lectures on Hermite and Laguerre Expansions, Math. Notes 42, Princeton University, Princeton, 1993. 10.1515/9780691213927Suche in Google Scholar

[13] Y. Wang, Y. Liu, C. Sun and P. Li, Carleson measure characterizations of the Campanato type space associated with Schrödinger operators on stratified Lie groups, Forum Math. 32 (2020), no. 5, 1337–1373. 10.1515/forum-2019-0224Suche in Google Scholar

[14] Z. Zhai, Strichartz type estimates for fractional heat equations, J. Math. Anal. Appl. 356 (2009), no. 2, 642–658. 10.1016/j.jmaa.2009.03.051Suche in Google Scholar

Received: 2023-08-09
Published Online: 2024-01-02
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0285/pdf
Button zum nach oben scrollen