Startseite Mathematik Algebraic results on rngs of singular functions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Algebraic results on rngs of singular functions

  • Arran Fernandez ORCID logo EMAIL logo und Müge Saadetoğlu
Veröffentlicht/Copyright: 30. Januar 2024

Abstract

We consider a Mikusiński-type convolution algebra C α , including functions with power-type singularities at the origin as well as all functions continuous on [ 0 , ) . Algebraic properties of this space are derived, including its ideal structure, filtered and graded structure, and Jacobson radical. Applications to operators of fractional calculus and the associated integro-differential equations are discussed.


Communicated by Siegfried Echterhoff


References

[1] E. Abe, Hopf Algebras, Cambridge Tracts in Math. 74, Cambridge University, Cambridge, 1980. Suche in Google Scholar

[2] M. Al-Refai and D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals 30 (2022), no. 5, 1–7. 10.1142/S0218348X22401296Suche in Google Scholar

[3] M. Al-Refai and Y. Luchko, The general fractional integrals and derivatives on a finite interval, Mathematics 11 (2023), Paper No. 1031. 10.3390/math11041031Suche in Google Scholar

[4] M. Artin, Algebra, Prentice Hall, Englewood Cliffs, 1991. Suche in Google Scholar

[5] K. Diethelm, R. Garrappa, A. Giusti and M. Stynes, Why fractional derivatives with nonsingular kernels should not be used, Fract. Calc. Appl. Anal. 23 (2020), no. 3, 610–634. 10.1515/fca-2020-0032Suche in Google Scholar

[6] I. Dimovski, Operational calculus for a class of differential operators, C. R. Acad. Bulgare Sci. 19 (1966), 1111–1114. Suche in Google Scholar

[7] H. M. Fahad and A. Fernandez, Operational calculus for Riemann–Liouville fractional calculus with respect to functions and the associated fractional differential equations, Fract. Calc. Appl. Anal. 24 (2021), no. 2, 518–540. 10.1515/fca-2021-0023Suche in Google Scholar

[8] A. Fernandez, Mikusiński’s operational calculus for general conjugated fractional derivatives, Bol. Soc. Mat. Mex. (3) 29 (2023), no. 1, Paper No. 25. 10.1007/s40590-023-00494-3Suche in Google Scholar

[9] A. Fernandez and M. Al-Refai, A rigorous analysis of integro-differential operators with non-singular kernels, Fractal Fract. 7 (2023), no. 3, Paper No. 213. 10.3390/fractalfract7030213Suche in Google Scholar

[10] A. Fernandez and D. Baleanu, Classes of operators in fractional calculus: A case study, Math. Methods Appl. Sci. 44 (2021), no. 11, 9143–9162. 10.1002/mma.7341Suche in Google Scholar

[11] H. G. Flegg, Mikusinski’s operational calculus, Internat. J. Math. Ed. Sci. Tech. 5 (1974), no. 2, 131–137. 10.1080/0020739740050201Suche in Google Scholar

[12] J. A. Gallian, Contemporary Abstract Algebra, 9th ed., Cengage, Uttar Pradesh, 2017. Suche in Google Scholar

[13] I. Gelfand, D. Raikov and G. Shilov, Commutative Normed Rings, Chelsea, New York, 1964. Suche in Google Scholar

[14] M. Gutterman, An operational method in partial differential equations, SIAM J. Appl. Math. 17 (1969), 468–493. 10.1137/0117046Suche in Google Scholar

[15] S. B. Hadid and Y. F. Luchko, An operational method for solving fractional differential equations of an arbitrary real order, PanAmer. Math. J. 6 (1996), no. 1, 57–73. Suche in Google Scholar

[16] H. E. Heatherly and J. P. Huffman, Algebraic properties of the Mikusiński convolution algebra, Acta Math. Hungar. 89 (2000), no. 3, 179–187. 10.1023/A:1010626606274Suche in Google Scholar

[17] I. N. Herstein, Topics in Algebra, 2nd ed., John Wiley and Sons, New York, 1975. Suche in Google Scholar

[18] T. Y. Lam, Exercises in Classical Ring Theory, Probl. Books in Math, Springer, New York, 1995. 10.1007/978-1-4757-3987-9Suche in Google Scholar

[19] T. Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math. 131, Springer, New York, 2001. 10.1007/978-1-4419-8616-0Suche in Google Scholar

[20] S. Lang, Algebra, Grad. Texts in Math. 211, Springer, New York, 2002. 10.1007/978-1-4613-0041-0Suche in Google Scholar

[21] Y. Luchko, Operational method in fractional calculus, Fract. Calc. Appl. Anal. 2 (1999), no. 4, 463–488. Suche in Google Scholar

[22] Y. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam. 24 (1999), no. 2, 207–233. Suche in Google Scholar

[23] J. Mikusiński, Operational Calculus, Int. Ser. Monogr. Pure Appl. Math. 8, Pergamon Press, New York, 1959. Suche in Google Scholar

[24] L. A. Pipes, The operational calculus I, J. App. Phys. 10 (1939), Paper No. 172. 10.1063/1.1707292Suche in Google Scholar

[25] N. Rani and A. Fernandez, Mikusiński’s operational calculus for Prabhakar fractional´calculus, Integral Transforms Spec. Funct. 33 (2022), no. 12, 945–965. 10.1080/10652469.2022.2057970Suche in Google Scholar

[26] J. Sabatier, Fractional-order derivatives defined by continuous kernels: Are they really too restrictive?, Fractal Fract 4 (2020), no. 3, Paper No. 40. 10.3390/fractalfract4030040Suche in Google Scholar

[27] F. A. Szász, Radicals of Rings, John Wiley & Sons, New York, 1981. Suche in Google Scholar

Received: 2023-12-06
Published Online: 2024-01-30
Published in Print: 2024-09-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 12.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0445/html
Button zum nach oben scrollen