Startseite Some results on Seshadri constants of vector bundles
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Some results on Seshadri constants of vector bundles

  • Indranil Biswas EMAIL logo , Krishna Hanumanthu und Snehajit Misra
Veröffentlicht/Copyright: 25. August 2023

Abstract

We study Seshadri constants of certain ample vector bundles on projective varieties. Our main motivation is the following question: Under what conditions are the Seshadri constants of ample vector bundles at least 1 at all points of the variety? We exhibit some conditions under which this question has an affirmative answer. We primarily consider ample bundles on projective spaces and Hirzebruch surfaces. We also show that Seshadri constants of ample vector bundles can be arbitrarily small.

MSC 2020: 14C20; 14J60

Communicated by Jan Bruinier


Funding statement: The second and the third authors are partially supported by a grant from Infosys Foundation. The third author is supported financially by SERB-NPDF fellowship (File no: PDF/2021/00028).

Acknowledgements

We are grateful to the referee for a careful reading and the many suggestions which improved the paper. The present proof of Case 1 in Theorem 5.2, which is shorter than the earlier one, is due to the referee. We thank G. V. Ravindra for several useful discussions.

References

[1] V. Ancona, T. Peternell and J. A. Wiśniewski, Fano bundles and splitting theorems on projective spaces and quadrics, Pacific J. Math. 163 (1994), no. 1, 17–42. 10.2140/pjm.1994.163.17Suche in Google Scholar

[2] W. Barth, Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 63–91. 10.1007/BF01389784Suche in Google Scholar

[3] W. Barth, Some properties of stable rank-2 vector bundles on 𝐏 n , Math. Ann. 226 (1977), no. 2, 125–150. 10.1007/BF01360864Suche in Google Scholar

[4] M. C. Beltrametti, M. Schneider and A. J. Sommese, Chern inequalities and spannedness of adjoint bundles, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan 1993), Israel Math. Conf. Proc. 9, Bar-Ilan Univerity, Ramat Gan (1996),97–107. Suche in Google Scholar

[5] I. Biswas, Parabolic ample bundles, Math. Ann. 307 (1997), no. 3, 511–529. 10.1007/s002080050048Suche in Google Scholar

[6] I. Biswas and U. Bruzzo, On semistable principal bundles over a complex projective manifold, Int. Math. Res. Not. IMRN 2008 (2008), no. 12, Art. ID rnn035. 10.1093/imrn/rnn035Suche in Google Scholar

[7] I. Biswas, K. Hanumanthu and S. S. Kannan, On the Seshadri constants of equivariant bundles over Bott–Samelson varieties and wonderful compactifications, Manuscripta Math. (2023), 10.1007/s00229-023-01473-8. 10.1007/s00229-023-01473-8Suche in Google Scholar

[8] I. Biswas, K. Hanumanthu and D. S. Nagaraj, Positivity of vector bundles on homogeneous varieties, Internat. J. Math. 31 (2020), no. 12, Article ID 2050097. 10.1142/S0129167X20500974Suche in Google Scholar

[9] J. Dasgupta, B. Khan and A. Subramaniam, Seshadri constants of equivariant vector bundles on toric varieties, J. Algebra 595 (2022), 38–68. 10.1016/j.jalgebra.2021.11.040Suche in Google Scholar

[10] J.-P. Demailly, Singular Hermitian metrics on positive line bundles, Complex Algebraic Varieties (Bayreuth 1990), Lecture Notes in Math. 1507, Springer, Berlin (1992), 87–104. 10.1007/BFb0094512Suche in Google Scholar

[11] L. Ein and R. Lazarsfeld, Seshadri constants on smooth surfaces, Journées de géométrie algébrique d’Orsay, Astérisque 218, Société Mathématique de France, Paris (1993), 177–186. Suche in Google Scholar

[12] M. Fulger and T. Murayama, Seshadri constants for vector bundles, J. Pure Appl. Algebra 225 (2021), no. 4, Paper No. 106559. 10.1016/j.jpaa.2020.106559Suche in Google Scholar

[13] C. D. Hacon, Examples of spanned and ample vector bundles with small numerical invariants, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), no. 9, 1025–1029. Suche in Google Scholar

[14] C. D. Hacon, Remarks on Seshadri constants of vector bundles, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 3, 767–780. 10.5802/aif.1772Suche in Google Scholar

[15] R. Hartshorne, Varieties of small codimension in projective space, Bull. Amer. Math. Soc. 80 (1974), 1017–1032. 10.1090/S0002-9904-1974-13612-8Suche in Google Scholar

[16] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar

[17] M. Hering, M. Mustaţă and S. Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 607–640. 10.5802/aif.2534Suche in Google Scholar

[18] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, 2nd ed., Cambridge Math. Libr., Cambridge University, Cambridge, 2010. 10.1017/CBO9780511711985Suche in Google Scholar

[19] H. Ishihara, Rank 2 ample vector bundles on some smooth rational surfaces, Geom. Dedicata 67 (1997), no. 3, 309–336. 10.1023/A:1004992823855Suche in Google Scholar

[20] V. B. Mehta and M. V. Nori, Semistable sheaves on homogeneous spaces and abelian varieties, Proc. Indian Acad. Sci. Math. Sci. 93 (1984), no. 1, 1–12. 10.1007/BF02861830Suche in Google Scholar

[21] S. Misra and N. Ray, On ampleness of vector bundles, C. R. Math. Acad. Sci. Paris 359 (2021), 763–772. 10.5802/crmath.222Suche in Google Scholar

[22] S. Mukai, Semi-homogeneous vector bundles on an Abelian variety, J. Math. Kyoto Univ. 18 (1978), no. 2, 239–272. 10.1215/kjm/1250522574Suche in Google Scholar

[23] A. Noma, Ample and spanned vector bundles of top Chern number two on smooth projective varieties, Proc. Amer. Math. Soc. 126 (1998), no. 1, 35–43. 10.1090/S0002-9939-98-04464-5Suche in Google Scholar

[24] C. Okonek, M. Schneider and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3, Birkhäuser, Boston, 1980. 10.1007/978-1-4757-1460-9Suche in Google Scholar

[25] M. Szurek and J. a. A. Wiśniewski, Fano bundles of rank 2 on surfaces, Compos. Math. 76 (1990), no. 1–2, 295–305. 10.1007/978-94-009-0685-3_15Suche in Google Scholar

[26] M. Szurek and J. A. Wiśniewski, Fano bundles over 𝐏 3 and Q 3 , Pacific J. Math. 141 (1990), no. 1, 197–208. 10.2140/pjm.1990.141.197Suche in Google Scholar

Received: 2023-03-24
Revised: 2023-08-05
Published Online: 2023-08-25
Published in Print: 2024-05-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0101/html?lang=de
Button zum nach oben scrollen