Home On the Pauli group on 2-qubits in dynamical systems with pseudofermions
Article
Licensed
Unlicensed Requires Authentication

On the Pauli group on 2-qubits in dynamical systems with pseudofermions

  • Fabio Bagarello ORCID logo , Yanga Bavuma ORCID logo and Francesco G. Russo ORCID logo EMAIL logo
Published/Copyright: August 31, 2023

Abstract

The group of matrices P 1 of Pauli is a finite 2-group of order 16 and plays a fundamental role in quantum information theory, since it is related to the quantum information on the 1-qubit. Here we show that both P 1 and the Pauli 2-group P 2 of order 64 on 2-qubits, other than in quantum computing, can also appear in dynamical systems which are described by non-self-adjoint Hamiltonians. This will allow us to represent P 1 and P 2 in terms of pseudofermionic operators.


Communicated by Siegfried Echterhoff


Funding statement: Fabio Bagarello acknowledges partial support from University of Palermo and from the Gruppo Nazionale di Fisica Matematica (GNFM) of the Istituto Nazionale di Alta Matematica (INdAM). Yanga Bavuma and Francesco G. Russo thank University of Cape Town for the Emerging Research Programme for the Research Development Grant and National Research Foundation of South Africa for grants with Reference Numbers 150555, 113144, 118517.

Acknowledgements

We thank editor and referee for comments on the original version of the manuscript.

References

[1] G. Alicata, F. Bagarello, F. Gargano and S. Spagnolo, Quantum mechanical settings inspired by RLC circuits, J. Math. Phys. 59 (2018), no. 4, Article ID 042112. 10.1063/1.5026944Search in Google Scholar

[2] F. Bagarello, Deformed canonical (anti-)commutation relations and non-self-adjoint Hamiltonians, Non-Selfadjoint Operators in Quantum Physics, Wiley, Hoboken (2015), 121–188. 10.1002/9781118855300.ch3Search in Google Scholar

[3] F. Bagarello, Pseudo-Bosons and Their Coherent States, Math. Phys. Stud., Springer, Cham, 2022. 10.1007/978-3-030-94999-0Search in Google Scholar

[4] F. Bagarello, Y. Bavuma and F. G. Russo, Topological decompositions of the Pauli group and their influence on dynamical systems, Math. Phys. Anal. Geom. 24 (2021), no. 2, Paper No. 16. 10.1007/s11040-021-09387-1Search in Google Scholar

[5] F. Bagarello, A. Inoue and C. Trapani, Non-self-adjoint Hamiltonians defined by Riesz bases, J. Math. Phys. 55 (2014), no. 3, Article ID 033501. 10.1063/1.4866779Search in Google Scholar

[6] F. Bagarello and G. Pantano, Pseudo-fermions in an electronic loss-gain circuit, Int. J. Theor. Phys. 52 (2013), 4507–4518. 10.1007/s10773-013-1769-ySearch in Google Scholar

[7] F. Bagarello and F. G. Russo, A description of pseudo-bosons in terms of nilpotent Lie algebras, J. Geom. Phys. 125 (2018), 1–11. 10.1016/j.geomphys.2017.12.002Search in Google Scholar

[8] F. Bagarello and F. G. Russo, Realization of Lie algebras of high dimension via pseudo-bosonic operators, J. Lie Theory 30 (2020), no. 4, 925–938. Search in Google Scholar

[9] Y. Bavuma, A short note on the topological decomposition of the central product of groups, Trans. Comb. 11 (2022), no. 3, 123–129. Search in Google Scholar

[10] C. M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Progr. Phys. 70 (2007), no. 6, 947–1018. 10.1088/0034-4885/70/6/R03Search in Google Scholar

[11] C. M. Bender, PT Symmetry in Quantum and Classical Physics, World Scientific, Hackensack, 2019. 10.1142/q0178Search in Google Scholar

[12] C. M. Bender, F. Correa and A. Fring, Proceedings for “Pseudo-Hermitian Hamiltonians in Quantum Physics”, J. Phys. 2038 (2021), Article ID 012001. Search in Google Scholar

[13] C. M. Bender, M. DeKieviet and S. P. Klevansky, 𝒫 T quantum mechanics, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013), no. 1989, Article ID 20120523. 10.1098/rsta.2012.0523Search in Google Scholar PubMed PubMed Central

[14] O. Cherbal, M. Drir, M. Maamache and D. A. Trifonov, Fermionic coherent states for pseudo-Hermitian two-level systems, J. Phys. A 40 (2007), no. 8, 1835–1844. 10.1088/1751-8113/40/8/010Search in Google Scholar

[15] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser, Boston, 2003. 10.1007/978-0-8176-8224-8Search in Google Scholar

[16] J. Dieudonné, Quasi-Hermitian operators, Proceedings of the International Symposium on Linear Spaces (Jerusalem 1960), Pergamon, Oxford (1961), 115–122. Search in Google Scholar

[17] F. M. Ellis, U. Günther, T. Kottos, H. Ramezani and J. Schindler, Bypassing the bandwidth theorem with PT symmetry, Phys. Rev. A 85 (2012), Article ID 062122. Search in Google Scholar

[18] F. M. Ellis, T. Kottos, J. M. Lee, H. Ramezani and J. Schindler, PT-Symmetric Electronics, J. Phys. A 45 (2012), Article ID 444029. 10.1088/1751-8113/45/44/444029Search in Google Scholar

[19] H. Goldstein, C. Poole and J. Safko, Classical Mechanics, Addison-Wesley, New York, 2000. Search in Google Scholar

[20] B. C. Hall, Quantum Theory for Mathematicians, Grad. Texts in Math. 267, Springer, New York, 2013. 10.1007/978-1-4614-7116-5Search in Google Scholar

[21] M. R. Kibler, Variations on a theme of Heisenberg, Pauli and Weyl, J. Phys. A 41 (2008), no. 37, Article ID 375302. 10.1088/1751-8113/41/37/375302Search in Google Scholar

[22] A. Mostafazadeh, Pseudo-Hermitian representation of quantum mechanics, Int. J. Geom. Methods Mod. Phys. 7 (2010), no. 7, 1191–1306. 10.1142/S0219887810004816Search in Google Scholar

[23] A. Mostafazadeh, Pseudo -Hermitian quantum mechanics with unbounded metric operators, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371 (2013), no. 1989, Article ID 20120050. 10.1098/rsta.2012.0050Search in Google Scholar PubMed

[24] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University, Cambridge, 2004. Search in Google Scholar

[25] W. Pauli, Zur Quantenmechanik des magnetischen Elektrons, Z. Phys. 43 (1927), 601–623. 10.1007/BF01397326Search in Google Scholar

[26] D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math. 80, Springer, New York, 1996. 10.1007/978-1-4419-8594-1Search in Google Scholar

[27] P. Roman, Advanced Quantum Theory: An Outline of the Fundamental Idea, Addison-Wesley, New York, 1965. Search in Google Scholar

Received: 2022-12-07
Revised: 2023-07-25
Published Online: 2023-08-31
Published in Print: 2024-05-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0370/html
Scroll to top button