Startseite Electrostatic system with divergence-free Bach tensor and non-null cosmological constant
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrostatic system with divergence-free Bach tensor and non-null cosmological constant

  • Benedito Leandro EMAIL logo und Róbson Lousa
Veröffentlicht/Copyright: 27. Oktober 2023

Abstract

We prove that three-dimensional electrostatic manifolds with divergence-free Bach tensor are locally conformally flat, provided that the electric field and the gradient of the lapse function are linearly dependent. Consequently, a three-dimensional electrostatic manifold admits a local warped product structure with a one-dimensional base and a constant curvature surface fiber.

MSC 2020: 83C22; 83C05; 53C18

Communicated by Karin Melnick


Award Identifier / Grant number: 303157/2022-4

Award Identifier / Grant number: 403349/2021-4

Funding statement: Benedito Leandro was partially supported by CNPq/Brazil Grant 303157/2022-4. Róbson Lousa was partially supported by PROPG-CAPES [Finance Code 001]. The authors were partially supported by CNPq Grant 403349/2021-4.

Acknowledgements

The authors would like to express their gratitude to Professor Tiarlos Cruz for his valuable comments and insightful discussions. We also want to thank the referee for carefully reading this work and for the relevant remarks.

References

[1] R. Bach, Zur Weylschen Relativitatsttheorie, Math. Z. 9 (1921), 110–135. 10.1007/BF01378338Suche in Google Scholar

[2] A. L. Besse, Einstein manifolds, Class. Math., Springer, Berlin, 2007. Suche in Google Scholar

[3] H.-D. Cao and Q. Chen, On Bach-flat gradient shrinking Ricci solitons, Duke Math. J. 162 (2013), no. 6, 1149–1169. 10.1215/00127094-2147649Suche in Google Scholar

[4] H.-D. Cao, X. Sun and Y. Zhang, On the structure of gradient Yamabe solitons, Math. Res. Lett. 19 (2012), no. 4, 767–774. 10.4310/MRL.2012.v19.n4.a3Suche in Google Scholar

[5] G. Catino, P. Mastrolia and D. D. Monticelli, Gradient Ricci solitons with vanishing conditions on Weyl, J. Math. Pures Appl. (9) 108 (2017), no. 1, 1–13. 10.1016/j.matpur.2016.10.007Suche in Google Scholar

[6] C. Cederbaum and G. J. Galloway, Uniqueness of photon spheres in electro-vacuum spacetimes, Classical Quantum Gravity 33 (2016), no. 7, Article ID 075006. 10.1088/0264-9381/33/7/075006Suche in Google Scholar

[7] B. Chow, P. Lu and L. Ni, Hamilton’s Ricci Flow, Grad. Stud. Math. 77, American Mathematical Society, Providence, 2006. Suche in Google Scholar

[8] P. T. Chruściel and E. Delay, Non-singular, vacuum, stationary space-times with a negative cosmological constant, Ann. Henri Poincaré 8 (2007), no. 2, 219–239. 10.1007/s00023-006-0306-4Suche in Google Scholar

[9] P. T. Chruściel and E. Delay, Non-singular space-times with a negative cosmological constant: II. Static solutions of the Einstein-Maxwell equations, Lett. Math. Phys. 107 (2017), no. 8, 1391–1407. 10.1007/s11005-017-0955-xSuche in Google Scholar PubMed PubMed Central

[10] T. Cruz, V. Lima and A. de Sousa, Min-max minimal surfaces, horizons and electrostatic systems, preprint (2019), https://arxiv.org/abs/1912.08600; to appear in J. Differential Geom. Suche in Google Scholar

[11] S. Fernando, Born–Infeld–de Sitter gravity: cold, ultra-cold and Nariai black holes, Internat. J. Modern Phys. D 22 (2013), no. 13, Article ID 1350080. 10.1142/S0218271813500806Suche in Google Scholar

[12] S. Hwang and G. Yun, Vacuum static spaces with vanishing of complete divergence of Weyl tensor, J. Geom. Anal. 31 (2021), no. 3, 3060–3084. 10.1007/s12220-020-00384-4Suche in Google Scholar

[13] H. K. Kunduri and J. Lucietti, No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory, Classical and Quantum Gravity 35 (2018), no. 5, 054003. 10.1088/1361-6382/aaa744Suche in Google Scholar

[14] B. Leandro, Vanishing conditions on Weyl tensor for Einstein-type manifolds, Pacific J. Math. 314 (2021), no. 1, 99–113. 10.2140/pjm.2021.314.99Suche in Google Scholar

[15] B. Leandro, M. Andrade and R. Lousa, On the geometry of electrovacuum spaces in higher dimensions, Ann. Henri Poincaré 24 (2023), no. 9, 3153–3184. 10.1007/s00023-023-01306-0Suche in Google Scholar

[16] J. Lucietti, All higher-dimensional Majumdar–Papapetrou black holes, Ann. Henri Poincaré 22 (2021), no. 7, 2437–2450. 10.1007/s00023-021-01037-0Suche in Google Scholar

[17] J. Qing and W. Yuan, A note on static spaces and related problems, J. Geom. Phys. 74 (2013), 18–27. 10.1016/j.geomphys.2013.07.003Suche in Google Scholar

[18] D. C. Robinson, A simple proof of the generalization of Israel’s theorem, Gen. Relativ. Gravit. 8 (1977), 695–698. 10.1007/BF00756322Suche in Google Scholar

[19] P. Szekeres, Conformal tensors, Proc. Roy. Soc. Lond. Ser. A. Math. Phys. Sci. 304 (1968), no. 1476, 113–122. 10.1098/rspa.1968.0076Suche in Google Scholar

Received: 2023-02-10
Revised: 2023-08-10
Published Online: 2023-10-27
Published in Print: 2024-05-01

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2023-0040/html?lang=de
Button zum nach oben scrollen