Abstract
In this paper we discuss some basic properties of octonionic Bergman and Hardy spaces. In the first part we review some fundamental concepts of the general theory of octonionic Hardy and Bergman spaces together with related reproducing kernel functions in the monogenic setting. We explain how some of the fundamental problems in well-defining a reproducing kernel can be overcome in the non-associative setting by looking at the real part of an appropriately defined para-linear octonion-valued inner product. The presence of a weight factor of norm 1 in the definition of the inner product is an intrinsic new ingredient in the octonionic setting. Then we look at the slice monogenic octonionic setting using the classical complex book structure. We present explicit formulas for the slice monogenic reproducing kernels for the unit ball, the right octonionic half-space and strip domains bounded in the real direction. In the setting of the unit ball we present an explicit sequential characterization which can be obtained by applying the special Taylor series representation of the slice monogenic setting together with particular octonionic calculation rules that reflect the property of octonionic para-linearity.
References
[1] D. Alpay, F. Colombo and I. Sabadini, Slice Hyperholomorphic Schur Analysis, Oper. Theory Adv. Appl. 256, Birkhäuser/Springer, Cham, 2017. 10.1007/978-3-319-42514-6Search in Google Scholar
[2] J. C. Baez, The octonions, Bull. Amer. Math. Soc. (N. S.) 39 (2002), no. 2, 145–205. 10.1090/S0273-0979-01-00934-XSearch in Google Scholar
[3] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Res. Notes in Math. 76, Pitman, Boston, 1982. Search in Google Scholar
[4] F. Colombo, R. S. Kraußhar and I. Sabadini, On Bergman and Hardy spaces in the octonionic setting, preprint. Search in Google Scholar
[5] F. Colombo, I. Sabadini and D. C. Struppa, Dirac equation in the octonionic algebra, Analysis, Geometry, Number Theory: The Mathematics of Leon Ehrenpreis (Philadelphia 1998), Contemp. Math. 251, American Mathematical Society, Providence (2000), 117–134. 10.1090/conm/251/03864Search in Google Scholar
[6] F. Colombo, I. Sabadini and D. C. Struppa, Michele Sce’s Works in Hypercomplex Analysis—A Translation with Commentaries, Birkhäuser/Springer, Cham, 2020. 10.1007/978-3-030-50216-4Search in Google Scholar
[7] D. Constales and R. S. Kraußhar, Octonionic Kerzman–Stein operators, Complex Anal. Oper. Theory 15 (2021), no. 6, Paper No. 104. 10.1007/s11785-021-01152-0Search in Google Scholar
[8] D. Constales and R. S. Kraußhar, Szegő and polymonogenic Bergman kernels for half-space and strip domains, and single-periodic functions in Clifford analysis, Complex Var. Theory Appl. 47 (2002), no. 4, 349–360. 10.1080/02781070290013785Search in Google Scholar
[9] P. Dentoni and M. Sce, Funzioni regolari nell’algebra di Cayley, Rend. Semin. Mat. Univ. Padova 50 (1973), 251–267. Search in Google Scholar
[10] C. Dieckmann, Jacobiformen über den Cayley-Zahlen, Ph.D. Thesis, Lehrstuhl A für Mathematik, RWTH Aachen University, 2014. Search in Google Scholar
[11] X. Dou, G. Ren, I. Sabadini and T. Yang, Weak slice regular functions on the n-dimensional quadratic cone of octonions, J. Geom. Anal. 31 (2021), no. 11, 11312–11337. 10.1007/s12220-021-00682-5Search in Google Scholar
[12] G. Gentili and D. C. Struppa, Regular functions on the space of Cayley numbers, Rocky Mountain J. Math. 40 (2010), no. 1, 225–241. 10.1216/RMJ-2010-40-1-225Search in Google Scholar
[13] R. Ghiloni and A. Perotti, Slice regular functions on real alternative algebras, Adv. Math. 226 (2011), no. 2, 1662–1691. 10.1016/j.aim.2010.08.015Search in Google Scholar
[14] R. Ghiloni, A. Perotti and V. Recupero, Noncommutative Cauchy integral formula, Complex Anal. Oper. Theory 11 (2017), no. 2, 289–306. 10.1007/s11785-016-0543-6Search in Google Scholar
[15] H. H. Goldstine and L. P. Horwitz, Hilbert space with non-associative scalars. I, Math. Ann. 154 (1964), 1–27. 10.1007/BF01360723Search in Google Scholar
[16] Q. Huo and G. Ren, Para-linearity as the nonassociative counterpart of linearity, J. Geom. Anal. 32 (2022), no. 12, Paper No. 304. 10.1007/s12220-022-01037-4Search in Google Scholar
[17] Q. Huo and G. Ren, Structure of octonionic Hilbert spaces with applications in the Parseval equality and Cayley–Dickson algebras, J. Math. Phys. 63 (2022), no. 4, Paper No. 042101. 10.1063/5.0085132Search in Google Scholar
[18] J. Kauhanen and H. Orelma, Cauchy-Riemann operators in octonionic analysis, Adv. Appl. Clifford Algebr. 28 (2018), no. 1, Paper No. 1. 10.1007/s00006-018-0826-2Search in Google Scholar
[19] J. Kauhanen and H. Orelma, On the structure of octonion regular functions, Adv. Appl. Clifford Algebr. 29 (2019), no. 4, Paper No. 77. 10.1007/s00006-019-0983-ySearch in Google Scholar
[20] R. S. Kraußhar, Differential topological aspects in octonionic monogenic function theory, Adv. Appl. Clifford Algebr. 30 (2020), Paper No. 51. 10.1007/s00006-020-01074-8Search in Google Scholar
[21] R. S. Kraußhar, Recent and new results on octonionic Bergman and Szegő kernels, Math. Methods Appl. Sci. (2021), 10.1002/mma.7316. 10.1002/mma.7316Search in Google Scholar
[22] X. Li and L. Peng, On Stein–Weiss conjugate harmonic function and octonion analytic function, Approx. Theory Appl. (N. S.) 16 (2000), no. 2, 28–36. 10.1007/BF02837390Search in Google Scholar
[23] X. Li and L. Peng, The Cauchy integral formulas on the octonions, Bull. Belg. Math. Soc. Simon Stevin 9 (2002), no. 1, 47–64. 10.36045/bbms/1102715140Search in Google Scholar
[24] X. Li, K. Zhao and L. Peng, The Laurent series on the octonions, Adv. Appl. Clifford Algebras 11 (2001), no. S2, 205–217. 10.1007/BF03219132Search in Google Scholar
[25] X.-M. Li, Z. Kai and L.-Z. Peng, Characterization of octonionic analytic functions, Complex Var. Theory Appl. 50 (2005), no. 13, 1031–1040. 10.1080/02781070500230432Search in Google Scholar
[26] X. M. Li, L. Z. Peng and T. Qian, Cauchy integrals on Lipschitz surfaces in octonionic space, J. Math. Anal. Appl. 343 (2008), no. 2, 763–777. 10.1016/j.jmaa.2008.01.079Search in Google Scholar
[27] S. V. Ludkovsky and W. Sprössig, Spectral representations of operators in Hilbert spaces over quaternions and octonions, Complex Var. Elliptic Equ. 57 (2012), no. 12, 1301–1324. 10.1080/17476933.2010.538845Search in Google Scholar
[28] K. Nôno, On the octonionic linearization of Laplacian and octonionic function theory, Bull. Fukuoka Univ. Ed. III 37 (1988), 1–15. Search in Google Scholar
[29] B. R. Prather, Octonions – Hilbert spaces, fibrations and analysis, Ph.D. Thesis, Florida State University, 2021. Search in Google Scholar
[30] G. Ren and T. Yang, Slice regular functions of several octonionic variables, Math. Methods Appl. Sci. 43 (2020), no. 9, 6031–6042. 10.1002/mma.6344Search in Google Scholar
[31] J. Wang and X. Li, The octonionic Bergman kernel for the unit ball, Adv. Appl. Clifford Algebr. 28 (2018), no. 3, Paper No. 60. 10.1007/s00006-018-0877-4Search in Google Scholar
[32] J. Wang and X. Li, The octonionic Bergman kernel for the half space, Adv. Appl. Clifford Algebr. 30 (2020), no. 4, Paper No. 57. 10.1007/s00006-020-01087-3Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The C*-algebra of the Boidol group
- Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
- Positive rigs
- Torus bundles over lens spaces
- Topological amenability of semihypergroups
- On projections of the tails of a power
- Li–Yorke chaos for composition operators on Orlicz spaces
- A note on the post quantum-Sheffer polynomial sequences
- Finite rigid sets of the non-separating curve complex
- Building planar polygon spaces from the projective braid arrangement
- Octonionic monogenic and slice monogenic Hardy and Bergman spaces
- Transcendence on algebraic groups
- An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
- The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
- Joint distribution of the cokernels of random p-adic matrices II
Articles in the same Issue
- Frontmatter
- The C*-algebra of the Boidol group
- Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
- Positive rigs
- Torus bundles over lens spaces
- Topological amenability of semihypergroups
- On projections of the tails of a power
- Li–Yorke chaos for composition operators on Orlicz spaces
- A note on the post quantum-Sheffer polynomial sequences
- Finite rigid sets of the non-separating curve complex
- Building planar polygon spaces from the projective braid arrangement
- Octonionic monogenic and slice monogenic Hardy and Bergman spaces
- Transcendence on algebraic groups
- An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
- The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
- Joint distribution of the cokernels of random p-adic matrices II