Startseite Mathematik Gibbons’ conjecture for quasilinear elliptic equations involving a gradient term
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Gibbons’ conjecture for quasilinear elliptic equations involving a gradient term

  • Phuong Le ORCID logo EMAIL logo
Veröffentlicht/Copyright: 1. Juni 2023

Abstract

We prove Gibbons’ conjecture for the quasilinear elliptic equation

- Δ p u + a ( u ) | u | q = f ( u ) in  N ,

where N 2 , 2 N + 2 N + 2 < p < 2 , q 1 and a and f are Lipschitz continuous functions which satisfy some relevant conditions. This conjecture states that every weak solution u C 1 ( N ) of the equation with | u | 1 and lim x N ± u ( x , x N ) = ± 1 , uniformly in x N - 1 , must depend only on x N and u x N > 0 in N . In particular, our result holds for a being non-decreasing on [ - 1 , - 1 + δ ] and on [ 1 - δ , 1 ] and f ( u ) = | u | r u | 1 - u 2 | s ( 1 - u 2 ) , where r , s , δ 0 . The main tool we use is an adaptation of the sliding method to the corresponding quasilinear elliptic operator.


Communicated by Frank Duzaar


Funding statement: This research is funded by University of Economics and Law, VNU-HCM.

References

[1] L. Ambrosio and X. Cabré, Entire solutions of semilinear elliptic equations in 𝐑 3 and a conjecture of De Giorgi, J. Amer. Math. Soc. 13 (2000), no. 4, 725–739. 10.1090/S0894-0347-00-00345-3Suche in Google Scholar

[2] M. T. Barlow, R. F. Bass and C. Gui, The Liouville property and a conjecture of De Giorgi, Comm. Pure Appl. Math. 53 (2000), no. 8, 1007–1038. 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO;2-USuche in Google Scholar

[3] H. Berestycki, L. Caffarelli and L. Nirenberg, Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 (1998), no. 1–2, 69–94. Suche in Google Scholar

[4] H. Berestycki, L. A. Caffarelli and L. Nirenberg, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math. 50 (1997), no. 11, 1089–1111. 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6Suche in Google Scholar

[5] H. Berestycki, F. Hamel and R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J. 103 (2000), no. 3, 375–396. 10.1215/S0012-7094-00-10331-6Suche in Google Scholar

[6] H. Berestycki and L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N. S.) 22 (1991), no. 1, 1–37. 10.1007/BF01244896Suche in Google Scholar

[7] G. Carbou, Unicité et minimalité des solutions d’une équation de Ginzburg–Landau, Ann. Inst. H. Poincaré C Anal. Non Linéaire 12 (1995), no. 3, 305–318. 10.1016/s0294-1449(16)30158-5Suche in Google Scholar

[8] H. Chan and J. Wei, On De Giorgi’s conjecture: Recent progress and open problems, Sci. China Math. 61 (2018), no. 11, 1925–1946. 10.1007/s11425-017-9307-4Suche in Google Scholar

[9] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 4, 493–516. 10.1016/s0294-1449(98)80032-2Suche in Google Scholar

[10] L. Damascelli and B. Sciunzi, Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-Laplace equations, Calc. Var. Partial Differential Equations 25 (2006), no. 2, 139–159. 10.1007/s00526-005-0337-6Suche in Google Scholar

[11] E. De Giorgi, Convergence problems for functionals and operators, Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome 1978), Pitagora, Bologna (1979), 131–188. Suche in Google Scholar

[12] M. del Pino, M. Kowalczyk and J. Wei, On De Giorgi’s conjecture in dimension N 9 , Ann. of Math. (2) 174 (2011), no. 3, 1485–1569. 10.4007/annals.2011.174.3.3Suche in Google Scholar

[13] E. DiBenedetto, C 1 + α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), no. 8, 827–850. 10.1016/0362-546X(83)90061-5Suche in Google Scholar

[14] F. Esposito, A. Farina, L. Montoro and B. Sciunzi, Monotonicity of positive solutions to quasilinear elliptic equations in half-spaces with a changing-sign nonlinearity, Calc. Var. Partial Differential Equations 61 (2022), no. 4, Paper No. 154. 10.1007/s00526-022-02250-3Suche in Google Scholar

[15] F. Esposito, A. Farina, L. Montoro and B. Sciunzi, On the Gibbons’ conjecture for equations involving the p-Laplacian, Math. Ann. 382 (2022), no. 1–2, 943–974. 10.1007/s00208-020-02065-7Suche in Google Scholar

[16] F. Esposito, S. Merchán and L. Montoro, Symmetry results for p-Laplacian systems involving a first-order term, Ann. Mat. Pura Appl. (4) 200 (2021), no. 5, 2313–2331. 10.1007/s10231-021-01082-wSuche in Google Scholar

[17] F. Esposito, B. Sciunzi and A. Trombetta, Regularity and symmetry results for nonlinear degenerate elliptic equations, J. Differential Equations 336 (2022), 315–333. 10.1016/j.jde.2022.07.021Suche in Google Scholar

[18] A. Farina, Symmetry for solutions of semilinear elliptic equations in 𝐑 N and related conjectures, Ric. Mat. 48 (1999), 129–154. Suche in Google Scholar

[19] A. Farina, L. Montoro, G. Riey and B. Sciunzi, Monotonicity of solutions to quasilinear problems with a first-order term in half-spaces, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), no. 1, 1–22. 10.1016/j.anihpc.2013.09.005Suche in Google Scholar

[20] A. Farina, L. Montoro and B. Sciunzi, Monotonicity and one-dimensional symmetry for solutions of - Δ p u = f ( u ) in half-spaces, Calc. Var. Partial Differential Equations 43 (2012), no. 1–2, 123–145. 10.1007/s00526-011-0405-zSuche in Google Scholar

[21] A. Farina, B. Sciunzi and N. Soave, Monotonicity and rigidity of solutions to some elliptic systems with uniform limits, Commun. Contemp. Math. 22 (2020), no. 5, Article ID 1950044. 10.1142/S0219199719500445Suche in Google Scholar

[22] J. García-Melián, J. C. Sabina de Lis and P. Takáč, Dirichlet problems for the p-Laplacian with a convection term, Rev. Mat. Complut. 30 (2017), no. 2, 313–334. 10.1007/s13163-017-0227-4Suche in Google Scholar

[23] N. Ghoussoub and C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann. 311 (1998), no. 3, 481–491. 10.1007/s002080050196Suche in Google Scholar

[24] P. Le, One-dimensional symmetry of solutions to non-cooperative elliptic systems, Nonlinear Anal. 227 (2023), Paper No. 113156. 10.1016/j.na.2022.113156Suche in Google Scholar

[25] P. Le, Uniqueness of bounded solutions to p-Laplace problems in strips, C. R. Math. Acad. Sci. Paris 361 (2023), 795–801. 10.5802/crmath.442Suche in Google Scholar

[26] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), no. 11, 1203–1219. 10.1016/0362-546X(88)90053-3Suche in Google Scholar

[27] S. Merchán, L. Montoro and B. Sciunzi, On the Harnack inequality for quasilinear elliptic equations with a first-order term, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 5, 1075–1095. 10.1017/S030821051700035XSuche in Google Scholar

[28] L. Montoro, Harnack inequalities and qualitative properties for some quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 26 (2019), no. 6, Paper No. 45. 10.1007/s00030-019-0591-5Suche in Google Scholar

[29] L. Montoro, B. Sciunzi and M. Squassina, Asymptotic symmetry for a class of quasi-linear parabolic problems, Adv. Nonlinear Stud. 10 (2010), no. 4, 789–818. 10.1515/ans-2010-0404Suche in Google Scholar

[30] P. Pucci and J. Serrin, The Maximum Principle, Progr. Nonlinear Differential Equations Appl. 73, Birkhäuser, Basel, 2007. 10.1007/978-3-7643-8145-5Suche in Google Scholar

[31] O. Savin, Regularity of flat level sets in phase transitions, Ann. of Math. (2) 169 (2009), no. 1, 41–78. 10.4007/annals.2009.169.41Suche in Google Scholar

[32] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. 10.1016/0022-0396(84)90105-0Suche in Google Scholar

[33] J. L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), no. 3, 191–202. 10.1007/BF01449041Suche in Google Scholar

Received: 2022-11-30
Revised: 2023-04-25
Published Online: 2023-06-01
Published in Print: 2023-09-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0360/pdf
Button zum nach oben scrollen