Startseite Simpler foundations for the hyperbolic plane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simpler foundations for the hyperbolic plane

  • John Bamberg ORCID logo EMAIL logo und Tim Penttila
Veröffentlicht/Copyright: 3. März 2023

Abstract

H. L. Skala (1992) gave the first elegant first-order axiom system for hyperbolic geometry by replacing Menger’s axiom involving projectivities with the theorems of Pappus and Desargues for the hyperbolic plane. In so doing, Skala showed that hyperbolic geometry is incidence geometry. We improve upon Skala’s formulation by doing away with Pappus and Desargues altogether, by substituting for them two simpler axioms.


Communicated by Manfred Droste


Award Identifier / Grant number: FT120100036

Funding statement: The first author acknowledges the support of the Australian Research Council Future Fellowship FT120100036.

Acknowledgements

The first author would like to give special thanks to Sue Barwick for accommodating the first author’s research visit to the University of Adelaide where much of this work was done. We are especially grateful to an anonymous referee for their comments on a draft of this paper.

References

[1] J. C. Abbott, The projective theory of non-Euclidean geometry. I, Rep. Math. Colloq. (2) 3 (1941), 13–27. Suche in Google Scholar

[2] J. C. Abbott, The Projective Theory of Non-Euclidean Geometry, ProQuest LLC, Ann Arbor, 1942; Thesis (Ph.D.)–University of Notre Dame. Suche in Google Scholar

[3] J. C. Abbott, The projective theory of non-Euclidean geometry. II, Rep. Math. Colloq. (2) 4 (1943), 22–30. Suche in Google Scholar

[4] J. C. Abbott, The projective theory of non-Euclidean geometry, Rep. Math. Colloq. (2) 5(6) (1944), 43–52. Suche in Google Scholar

[5] F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, Grundlehren Math. Wiss. 96, Springer, Berlin, 1973. 10.1007/978-3-642-65537-1Suche in Google Scholar

[6] J. Bamberg, T. Harris and T. Penttila, On abstract ovals with Pascalian secant lines, J. Group Theory 21 (2018), no. 6, 1051–1064. 10.1515/jgth-2018-0028Suche in Google Scholar

[7] M. Bhattacharjee, D. Macpherson, R. G. Möller and P. M. Neumann, Notes on Infinite Permutation Groups, Texts Read. Math. 12, Hindustan Book, New Delhi, 1997. 10.1007/978-93-80250-91-5Suche in Google Scholar

[8] F. Buekenhout, Études intrinsèque des ovales, Rend. Mat. e Appl. (5) 25 (1966), 333–393. Suche in Google Scholar

[9] H. F. De Baggis, Hyperbolic geometry. I. A theory of order, Rep. Math. Colloq. (2) 7 (1946), 3–14. Suche in Google Scholar

[10] H. F. DeBaggis, Hyperbolic geometry. II. A theory of parallelism, Rep. Math. Colloq. (2) 8 (1948), 68–80. Suche in Google Scholar

[11] G. Hessenberg, Über einen geometrischen Calcül (Verknüpfungs-Calcül), Acta Math. 29 (1905), no. 1, 1–23. 10.1007/BF02403197Suche in Google Scholar

[12] D. Hilbert, Neue Begründung der Bolyai–Lobatschefskyschen Geometrie, Math. Ann. 57 (1903), no. 2, 137–150. 10.1007/BF01444341Suche in Google Scholar

[13] E. V. Huntington, Inter-relations among the four principal types of order, Trans. Amer. Math. Soc. 38 (1935), no. 1, 1–9. 10.1090/S0002-9947-1935-1501800-1Suche in Google Scholar

[14] F. P. Jenks, A new set of postulates for Bolyai–Lobachevsky geometry. II, Rep. Math. Colloq. (2) 2 (1940), 10–14. Suche in Google Scholar

[15] F. P. Jenks, A set of postulates for Bolyai–Lobatchevsky geometry, Proc. Natl. Acad. Sci. USA 26 (1940), 277–279. 10.1073/pnas.26.4.277Suche in Google Scholar PubMed PubMed Central

[16] F. P. Jenks, A new set of postulates for Bolyai–Lobachevsky geometry. III, Rep. Math. Colloq. (2) 3 (1941), 3–12. Suche in Google Scholar

[17] W. Klingenberg, Eine Begründung der hyperbolischen Geometrie, Math. Ann. 127 (1954), 340–356. 10.1007/BF01361130Suche in Google Scholar

[18] R. Lingenberg, Metric Planes and Metric Vector Spaces, Pure Appl. Math., John Wiley & Sons, New York, 1979. Suche in Google Scholar

[19] K. Menger, Non-Euclidean geometry of joining and intersecting, Bull. Amer. Math. Soc. 44 (1938), no. 12, 821–824. 10.1090/S0002-9904-1938-06875-9Suche in Google Scholar

[20] K. Menger, On algebra of geometry and recent progress in non-Euclidean geometry, Rice Inst. Pamphlet 27 (1940), 41–79. Suche in Google Scholar

[21] K. Menger, New projective definitions of the concepts of hyperbolic geometry, Rep. Math. Colloq. (2) 7 (1946), 20–28. Suche in Google Scholar

[22] K. Menger, The new foundation of hyperbolic geometry, A Spectrum of Mathematics (Essays presented to H. G. Forder), Auckland University, Auckland (1971), 86–97. Suche in Google Scholar

[23] V. Pambuccian, Constructive axiomatization of plane hyperbolic geometry, MLQ Math. Log. Q. 47 (2001), no. 4, 475–488. 10.1002/1521-3870(200111)47:4<475::AID-MALQ475>3.0.CO;2-SSuche in Google Scholar

[24] V. Pambuccian, Groups and plane geometry, Studia Logica 81 (2005), no. 3, 387–398. 10.1007/s11225-005-4650-zSuche in Google Scholar

[25] V. Pambuccian, Axiomatizations of hyperbolic and absolute geometries, Non-Euclidean Geometries, Math. Appl. (N. Y.) 581, Springer, New York (2006), 119–153. 10.1007/0-387-29555-0_7Suche in Google Scholar

[26] V. Pambuccian, The elementary geometry of a triangular world with hexagonal circles, Beiträge Algebra Geom. 49 (2008), no. 1, 165–175. Suche in Google Scholar

[27] V. Pambuccian, The axiomatics of ordered geometry I. Ordered incidence spaces, Expo. Math. 29 (2011), no. 1, 24–66. 10.1016/j.exmath.2010.09.004Suche in Google Scholar

[28] J. F. Rigby, Pascal ovals in projective planes, Canad. J. Math. 21 (1969), 1462–1476. 10.4153/CJM-1969-160-4Suche in Google Scholar

[29] P. Samuel, Projective Geometry, Undergrad. Texts Math., Springer, New York, 1988. 10.1007/978-1-4612-3896-6Suche in Google Scholar

[30] H. L. Skala, Projective-type axioms for the hyperbolic plane, Geom. Dedicata 44 (1992), no. 3, 255–272. 10.1007/BF00181394Suche in Google Scholar

[31] R. Struve, The calculus of reflections and the order relation in hyperbolic geometry, J. Geom. 103 (2012), no. 2, 333–346. 10.1007/s00022-012-0123-5Suche in Google Scholar

Received: 2022-09-13
Revised: 2023-01-10
Published Online: 2023-03-03
Published in Print: 2023-09-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0268/html
Button zum nach oben scrollen