Abstract
A positive rig is a commutative and unitary semi-ring A such that
Funding source: H2020 Marie Skłodowska-Curie Actions
Award Identifier / Grant number: 101007627
Funding source: Consejo Nacional de Investigaciones Científicas y Técnicas
Award Identifier / Grant number: PIP 11220200100912CO
Funding statement: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 101007627, and also from CONICET (Argentina), PIP 11220200100912CO.
References
[1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969. Search in Google Scholar
[2] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergeb. Math. Grenzgeb. (3) 36, Springer, Berlin, 1998. 10.1007/978-3-662-03718-8Search in Google Scholar
[3] N. Bourbaki, Algebra II. Chapters 4–7, Elem. Math. (Berlin), Springer, Berlin, 2003. 10.1007/978-3-642-61698-3Search in Google Scholar
[4] S. Bourne, On the radical of a positive semiring, Proc. Natl. Acad. Sci. USA 45 (1959), 10.1073/pnas.45.10.1519. 10.1073/pnas.45.10.1519Search in Google Scholar PubMed PubMed Central
[5] A. Carboni, S. Lack and R. F. C. Walters, Introduction to extensive and distributive categories, J. Pure Appl. Algebra 84 (1993), no. 2, 145–158. 10.1016/0022-4049(93)90035-RSearch in Google Scholar
[6] A. Carboni, M. C. Pedicchio and J. Rosický, Syntactic characterizations of various classes of locally presentable categories, J. Pure Appl. Algebra 161 (2001), no. 1–2, 65–90. 10.1016/S0022-4049(01)00016-0Search in Google Scholar
[7] J. L. Castiglioni, M. Menni and W. J. Zuluaga Botero, A representation theorem for integral rigs and its applications to residuated lattices, J. Pure Appl. Algebra 220 (2016), no. 10, 3533–3566. 10.1016/j.jpaa.2016.04.014Search in Google Scholar
[8] V. V. Chermnykh, Representation of positive semirings by sections, Uspekhi Mat. Nauk 47 (1992), no. 5(287), 193–194. 10.1070/RM1992v047n05ABEH000948Search in Google Scholar
[9] M. Droste and W. Kuich, Chapter 1: Semirings and formal power series, Handbook of Weighted Automata, edited by M. Droste, W. Kuich and H. Vogler, Monogr. Theoret. Comput. Sci. EATCS Ser., Springer, Berlin (2009), 3–28. 10.1007/978-3-642-01492-5_1Search in Google Scholar
[10] J. S. Golan, Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999. 10.1007/978-94-015-9333-5Search in Google Scholar
[11] P. T. Johnstone, Stone Spaces, Cambridge Stud. Adv. Math. 3, Cambridge University, Cambridge, 1982. Search in Google Scholar
[12] P. T. Johnstone, Sketches of an Elephant: A Topos Theory Compendium. Vol. 1, Oxford Logic Guides 43, Oxford University, New York, 2002. 10.1093/oso/9780198515982.003.0004Search in Google Scholar
[13] A. Kock, Synthetic Differential Geometry, 2nd ed., London Math. Soc. Lecture Note Ser. 333, Cambridge University, Cambridge, 2006. Search in Google Scholar
[14] J.-L. Krivine, Anneaux préordonnés, J. Anal. Math. 12 (1964), 307–326. 10.1007/BF02807438Search in Google Scholar
[15] F. W. Lawvere, Grothendieck’s 1973 Buffalo Colloquium, 2003. Email to the categories list, March 2003. Search in Google Scholar
[16] F. W. Lawvere, Functorial semantics of algebraic theories and some algebraic problems in the context of functorial semantics of algebraic theories, Repr. Theory Appl. Categ. (2004), no. 5, 1–121. Search in Google Scholar
[17] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, Universitext, Springer, New York, 1992. Search in Google Scholar
[18] P. Mayr and N. Ruškuc, Finiteness properties of direct products of algebraic structures, J. Algebra 494 (2018), 167–187. 10.1016/j.jalgebra.2017.09.035Search in Google Scholar
[19] M. Menni, A basis theorem for 2-rigs and rig geometry, Cah. Topol. Géom. Différ. Catég. 62 (2021), no. 4, 451–490. Search in Google Scholar
[20] S. H. Schanuel, Negative sets have Euler characteristic and dimension, Category Theory (Como 1990), Lecture Notes in Math. 1488, Springer, Berlin (1991), 379–385. 10.1007/BFb0084232Search in Google Scholar
[21] W. Słowikowski and W. Zawadowski, A generalization of maximal ideals method of Stone and Gelfand, Fund. Math. 42 (1955), 215–231. 10.4064/fm-42-2-215-231Search in Google Scholar
[22] F. A. Smith, A structure theory for a class of lattice ordered semirings, Fund. Math. 59 (1966), 49–64. 10.4064/fm-59-1-49-64Search in Google Scholar
[23] W. J. Zuluaga Botero, Coextensive varieties via central elements, Algebra Universalis 82 (2021), no. 3, Paper No. 50. 10.1007/s00012-021-00745-2Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The C*-algebra of the Boidol group
- Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
- Positive rigs
- Torus bundles over lens spaces
- Topological amenability of semihypergroups
- On projections of the tails of a power
- Li–Yorke chaos for composition operators on Orlicz spaces
- A note on the post quantum-Sheffer polynomial sequences
- Finite rigid sets of the non-separating curve complex
- Building planar polygon spaces from the projective braid arrangement
- Octonionic monogenic and slice monogenic Hardy and Bergman spaces
- Transcendence on algebraic groups
- An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
- The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
- Joint distribution of the cokernels of random p-adic matrices II
Articles in the same Issue
- Frontmatter
- The C*-algebra of the Boidol group
- Profinite genus of fundamental groups of compact flat manifolds with the cyclic holonomy group of square-free order
- Positive rigs
- Torus bundles over lens spaces
- Topological amenability of semihypergroups
- On projections of the tails of a power
- Li–Yorke chaos for composition operators on Orlicz spaces
- A note on the post quantum-Sheffer polynomial sequences
- Finite rigid sets of the non-separating curve complex
- Building planar polygon spaces from the projective braid arrangement
- Octonionic monogenic and slice monogenic Hardy and Bergman spaces
- Transcendence on algebraic groups
- An explicit version of Bombieri’s log-free density estimate and Sárközy’s theorem for shifted primes
- The ideal structure of partial skew groupoid rings with applications to topological dynamics and ultragraph algebras
- Joint distribution of the cokernels of random p-adic matrices II