Startseite Sharp Li–Yau inequalities for Dunkl harmonic oscillators
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Sharp Li–Yau inequalities for Dunkl harmonic oscillators

  • Huaiqian Li und Bin Qian EMAIL logo
Veröffentlicht/Copyright: 27. Januar 2023

Abstract

We study the Li–Yau inequality for the heat equation corresponding to the Dunkl harmonic oscillator, which is a nonlocal Schrödinger operator parameterized by reflections and multiplicity functions. In the particular case when the reflection group is isomorphic to 2 d , the result is sharp in the sense that equality is achieved by the heat kernel of the classic harmonic oscillator. We also provide the application on parabolic Harnack inequalities.


Communicated by Maria Gordina


Award Identifier / Grant number: 11831014

Funding statement: The first named author would like to acknowledge the Department of Mathematics and the Faculty of Science at Ryerson University for financial support and the financial support from the National Natural Science Foundation of China (Grant No. 11831014). The second named author would like to acknowledge the financial support from Qing Lan Project of Jiangsu.

Acknowledgements

The first named author would like to thank Dr. Niushan Gao for helpful discussions. The authors would like to express their sincere thanks to the anonymous referee for his/her careful reading and valuable suggestion.

References

[1] J.-P. Anker, An introduction to Dunkl theory and its analytic aspects, Analytic, Algebraic and Geometric Aspects of Differential Equations, Trends Math., Birkhäuser, Cham (2017), 3–58. 10.1007/978-3-319-52842-7_1Suche in Google Scholar

[2] J.-P. Anker, N. Ben Salem, J. Dziubański and N. Hamda, The Hardy space H 1 in the rational Dunkl setting, Constr. Approx. 42 (2015), no. 1, 93–128. 10.1007/s00365-014-9254-2Suche in Google Scholar

[3] J.-P. Anker, J. Dziubański and A. Hejna, Harmonic functions, conjugate harmonic functions and the Hardy space H 1 in the rational Dunkl setting, J. Fourier Anal. Appl. 25 (2019), no. 5, 2356–2418. 10.1007/s00041-019-09666-0Suche in Google Scholar

[4] D. Bakry, F. Bolley and I. Gentil, The Li–Yau inequality and applications under a curvature-dimension condition, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 1, 397–421. 10.5802/aif.3086Suche in Google Scholar

[5] D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math. 1123, Springer, Berlin (1985), 177–206. 10.1007/BFb0075847Suche in Google Scholar

[6] F. Bauer, P. Horn, Y. Lin, G. Lippner, D. Mangoubi and S.-T. Yau, Li–Yau inequality on graphs, J. Differential Geom. 99 (2015), no. 3, 359–405. 10.4310/jdg/1424880980Suche in Google Scholar

[7] F. Dai and Y. Xu, Analysis on h-Harmonics and Dunkl Transforms, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2015. 10.1007/978-3-0348-0887-3Suche in Google Scholar

[8] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math. 92, Cambridge University, Cambridge, 1990. Suche in Google Scholar

[9] D. Dier, M. Kassmann and R. Zacher, Discrete versions of the Li–Yau gradient estimate, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), no. 2, 691–744. 10.2422/2036-2145.201807_005Suche in Google Scholar

[10] C. F. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989), no. 1, 167–183. 10.1090/S0002-9947-1989-0951883-8Suche in Google Scholar

[11] C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications, Contemp. Math. 138, American Mathematical Society, Providence (1992), 123–138. 10.1090/conm/138/1199124Suche in Google Scholar

[12] C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, 2nd ed., Encyclopedia Math. Appl. 155, Cambridge University, Cambridge, 2014. 10.1017/CBO9781107786134Suche in Google Scholar

[13] L. Gallardo and M. Yor, Some new examples of Markov processes which enjoy the time-inversion property, Probab. Theory Related Fields 132 (2005), no. 1, 150–162. 10.1007/s00440-004-0399-ySuche in Google Scholar

[14] N. Garofalo, Fractional thoughts, New Developments in the Analysis of Nonlocal Operators, Contemp. Math. 723, American Mathematical Society, Providence (2019), 1–135. 10.1090/conm/723/14569Suche in Google Scholar

[15] P. Graczyk, T. Luks and M. Rösler, On the Green function and Poisson integrals of the Dunkl Laplacian, Potential Anal. 48 (2018), no. 3, 337–360. 10.1007/s11118-017-9638-6Suche in Google Scholar

[16] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Comm. Anal. Geom. 1 (1993), no. 1, 113–126. 10.4310/CAG.1993.v1.n1.a6Suche in Google Scholar

[17] S. Helmensdorfer and P. Topping, The geometry of differential Harnack estimates, preprint (2013), https://arxiv.org/abs/1301.1543. 10.5802/tsg.291Suche in Google Scholar

[18] N. N. Lebedev, Special Functions and Their Applications, Dover, New York, 1972. Suche in Google Scholar

[19] H. Li and M. Zhao, Dimension-free square function estimates for Dunkl operators, Math. Nachr. (2022), 10.1002/mana.202000210. 10.1002/mana.202000210Suche in Google Scholar

[20] J. Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), no. 2, 233–256. 10.1016/0022-1236(91)90110-QSuche in Google Scholar

[21] J. Li and X. Xu, Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation, Adv. Math. 226 (2011), no. 5, 4456–4491. 10.1016/j.aim.2010.12.009Suche in Google Scholar

[22] P. Li and S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3–4, 153–201. 10.1007/BF02399203Suche in Google Scholar

[23] F. Münch, Li–Yau inequality on finite graphs via non-linear curvature dimension conditions, J. Math. Pures Appl. (9) 120 (2018), 130–164. 10.1016/j.matpur.2018.10.006Suche in Google Scholar

[24] E. R. Negrín, Gradient estimates and a Liouville type theorem for the Schrödinger operator, J. Funct. Anal. 127 (1995), no. 1, 198–203. 10.1006/jfan.1995.1008Suche in Google Scholar

[25] A. Nowak and K. Stempak, Riesz transforms for the Dunkl harmonic oscillator, Math. Z. 262 (2009), no. 3, 539–556. 10.1007/s00209-008-0388-4Suche in Google Scholar

[26] B. Qian, Remarks on Li–Yau inequality on graphs, J. Math. Anal. Appl. 456 (2017), no. 2, 882–902. 10.1016/j.jmaa.2017.06.073Suche in Google Scholar

[27] M. Rösler, Generalized Hermite polynomials and the heat equation for Dunkl operators, Comm. Math. Phys. 192 (1998), no. 3, 519–542. 10.1007/s002200050307Suche in Google Scholar

[28] M. Rösler, Dunkl operators: Theory and applications, Orthogonal Polynomials and Special Functions, Lecture Notes in Math. 1817, Springer, Berlin (2003), 93–135. 10.1007/3-540-44945-0_3Suche in Google Scholar

[29] M. Rösler and M. Voit, Markov processes related with Dunkl operators, Adv. Appl. Math. 21 (1998), no. 4, 575–643. 10.1006/aama.1998.0609Suche in Google Scholar

[30] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math. 68, Cambridge University, Cambridge, 1999. Suche in Google Scholar

[31] K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), no. 2, 443–472. 10.1016/S0022-1236(03)00083-1Suche in Google Scholar

[32] F.-Y. Wang, Gradient and Harnack inequalities on noncompact manifolds with boundary, Pacific J. Math. 245 (2010), no. 1, 185–200. 10.2140/pjm.2010.245.185Suche in Google Scholar

[33] F. Weber and R. Zacher, Li–Yau inequalities for general non-local diffusion equations via reduction to the heat kernel, Math. Ann. (2022), 10.1007/s00208-021-02350-z. 10.1007/s00208-021-02350-zSuche in Google Scholar

[34] C. Yu and F. Zhao, Sharp Li–Yau-type gradient estimates on hyperbolic spaces, J. Geom. Anal. 30 (2020), no. 1, 54–68. 10.1007/s12220-018-00133-8Suche in Google Scholar

[35] Q. S. Zhang, A sharp Li–Yau gradient bound on compact manifolds, preprint (2021), https://arxiv.org/abs/2110.08933. Suche in Google Scholar

Received: 2022-07-29
Revised: 2022-12-09
Published Online: 2023-01-27
Published in Print: 2023-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0223/html
Button zum nach oben scrollen