Home On the asymptotics of the shifted sums of Hecke eigenvalue squares
Article
Licensed
Unlicensed Requires Authentication

On the asymptotics of the shifted sums of Hecke eigenvalue squares

  • Jiseong Kim ORCID logo EMAIL logo
Published/Copyright: January 30, 2023

Abstract

The purpose of this paper is to obtain asymptotics of shifted sums of Hecke eigenvalue squares on average. We show that for X 2 3 + ϵ < H < X 1 - ϵ there are constants B h such that

X n 2 X λ f ( n ) 2 λ f ( n + h ) 2 - B h X = O f , A , ϵ ( X ( log X ) - A )

for all but O f , A , ϵ ( H ( log X ) - 3 A ) integers h [ 1 , H ] where { λ f ( n ) } n 1 are normalized Hecke eigenvalues of a fixed holomorphic cusp form f. Our method is based on the Hardy–Littlewood circle method. We divide the minor arcs into two parts m 1 and m 2 . In order to treat m 2 , we use the Hecke relations, a bound of Miller to apply some arguments from a paper of Matomäki, Radziwiłł and Tao. In order to treat m 1 , we apply Parseval’s identity and Gallagher’s lemma.

MSC 2010: 11F30

Communicated by Valentin Blomer


Acknowledgements

The author would like to thank his advisor Xiaoqing Li, for suggesting this problem and giving helpful advice. The author is grateful to the referees for a careful reading of the paper and lots of invaluable suggestions.

References

[1] S. Baier, T. D. Browning, G. Marasingha and L. Zhao, Averages of shifted convolutions of d 3 ( n ) , Proc. Edinb. Math. Soc. (2) 55 (2012), no. 3, 551–576. 10.1017/S001309151100037XSearch in Google Scholar

[2] R. C. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach’s problem in short intervals, Sieve Methods, Exponential Sums, and Their Applications in Number Theory, London Math. Soc. Lecture Note Ser. 237, Cambridge University, Cambridge (1997), 1–54. 10.1017/CBO9780511526091.004Search in Google Scholar

[3] J.-M. Deshouillers and H. Iwaniec, An additive divisor problem, J. Lond. Math. Soc. (2) 26 (1982), no. 1, 1–14. 10.1112/jlms/s2-26.1.1Search in Google Scholar

[4] O. M. Fomenko, Fourier coefficients of parabolic forms, and automorphic L-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), no. 14, 194–226, 231. Search in Google Scholar

[5] D. Goldfeld, Automorphic Forms and L-Functions for the Group GL ( n , R ) , Cambridge Stud. Adv. Math. 99, Cambridge University, Cambridge, 2015. Search in Google Scholar

[6] B. Huang, On the Rankin–Selberg problem, Math. Ann. 381 (2021), no. 3–4, 1217–1251. 10.1007/s00208-021-02186-7Search in Google Scholar

[7] A. Ivić, The Riemann Zeta-Function, John Wiley & Sons, New York, 1985. Search in Google Scholar

[8] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, American Mathematical Society, Providence, 1997. 10.1090/gsm/017Search in Google Scholar

[9] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Search in Google Scholar

[10] G. Lü, Average behavior of Fourier coefficients of cusp forms, Proc. Amer. Math. Soc. 137 (2009), no. 6, 1961–1969. 10.1090/S0002-9939-08-09741-4Search in Google Scholar

[11] K. Matomäki and M. Radziwiłł, Sign changes of Hecke eigenvalues, Geom. Funct. Anal. 25 (2015), no. 6, 1937–1955. 10.1007/s00039-015-0350-7Search in Google Scholar

[12] K. Matomäki, M. Radziwiłł and T. Tao, Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges, Proc. Lond. Math. Soc. (3) 118 (2019), no. 2, 284–350. 10.1112/plms.12181Search in Google Scholar

[13] K. Matomäki, M. Radziwiłł and T. Tao, Correlations of the von Mangoldt and higher divisor functions II: Divisor correlations in short ranges, Math. Ann. 374 (2019), no. 1–2, 793–840. 10.1007/s00208-018-01801-4Search in Google Scholar

[14] S. D. Miller, Cancellation in additively twisted sums on GL ( n ) , Amer. J. Math. 128 (2006), no. 3, 699–729. 10.1353/ajm.2006.0027Search in Google Scholar

[15] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971. 10.1007/BFb0060851Search in Google Scholar

[16] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, American Mathematical Society, Providence, 1994. 10.1090/cbms/084Search in Google Scholar

[17] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge Stud. Adv. Math. 97, Cambridge University, Cambridge, 2007. 10.1017/CBO9780511618314Search in Google Scholar

[18] K. Ramachandra, A simple proof of the mean fourth power estimate for ζ ( 1 / 2 + i t ) and L ( 1 / 2 + i t , X ) , Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 1 (1974), 81–97. Search in Google Scholar

[19] R. A. Rankin, Contributions to the theory of Ramanujan’s function τ ( n ) and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372. 10.1017/S0305004100021095Search in Google Scholar

[20] R. A. Rankin, Sums of powers of cusp form coefficients, Math. Ann. 263 (1983), no. 2, 227–236. 10.1007/BF01456883Search in Google Scholar

[21] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47–50. Search in Google Scholar

[22] Ian Petrow and Matthew P. Young, The fourth moment of Dirichlet L-functions along a coset and the Weyl bound, preprint (2022), https://arxiv.org/abs/1908.10346. Search in Google Scholar

[23] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University, New York, 1986. Search in Google Scholar

Received: 2020-12-24
Revised: 2022-12-11
Published Online: 2023-01-30
Published in Print: 2023-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0359/html
Scroll to top button