Startseite On the asymptotics of the shifted sums of Hecke eigenvalue squares
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the asymptotics of the shifted sums of Hecke eigenvalue squares

  • Jiseong Kim ORCID logo EMAIL logo
Veröffentlicht/Copyright: 30. Januar 2023

Abstract

The purpose of this paper is to obtain asymptotics of shifted sums of Hecke eigenvalue squares on average. We show that for X 2 3 + ϵ < H < X 1 - ϵ there are constants B h such that

X n 2 X λ f ( n ) 2 λ f ( n + h ) 2 - B h X = O f , A , ϵ ( X ( log X ) - A )

for all but O f , A , ϵ ( H ( log X ) - 3 A ) integers h [ 1 , H ] where { λ f ( n ) } n 1 are normalized Hecke eigenvalues of a fixed holomorphic cusp form f. Our method is based on the Hardy–Littlewood circle method. We divide the minor arcs into two parts m 1 and m 2 . In order to treat m 2 , we use the Hecke relations, a bound of Miller to apply some arguments from a paper of Matomäki, Radziwiłł and Tao. In order to treat m 1 , we apply Parseval’s identity and Gallagher’s lemma.

MSC 2010: 11F30

Communicated by Valentin Blomer


Acknowledgements

The author would like to thank his advisor Xiaoqing Li, for suggesting this problem and giving helpful advice. The author is grateful to the referees for a careful reading of the paper and lots of invaluable suggestions.

References

[1] S. Baier, T. D. Browning, G. Marasingha and L. Zhao, Averages of shifted convolutions of d 3 ( n ) , Proc. Edinb. Math. Soc. (2) 55 (2012), no. 3, 551–576. 10.1017/S001309151100037XSuche in Google Scholar

[2] R. C. Baker, G. Harman and J. Pintz, The exceptional set for Goldbach’s problem in short intervals, Sieve Methods, Exponential Sums, and Their Applications in Number Theory, London Math. Soc. Lecture Note Ser. 237, Cambridge University, Cambridge (1997), 1–54. 10.1017/CBO9780511526091.004Suche in Google Scholar

[3] J.-M. Deshouillers and H. Iwaniec, An additive divisor problem, J. Lond. Math. Soc. (2) 26 (1982), no. 1, 1–14. 10.1112/jlms/s2-26.1.1Suche in Google Scholar

[4] O. M. Fomenko, Fourier coefficients of parabolic forms, and automorphic L-functions, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 237 (1997), no. 14, 194–226, 231. Suche in Google Scholar

[5] D. Goldfeld, Automorphic Forms and L-Functions for the Group GL ( n , R ) , Cambridge Stud. Adv. Math. 99, Cambridge University, Cambridge, 2015. Suche in Google Scholar

[6] B. Huang, On the Rankin–Selberg problem, Math. Ann. 381 (2021), no. 3–4, 1217–1251. 10.1007/s00208-021-02186-7Suche in Google Scholar

[7] A. Ivić, The Riemann Zeta-Function, John Wiley & Sons, New York, 1985. Suche in Google Scholar

[8] H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math. 17, American Mathematical Society, Providence, 1997. 10.1090/gsm/017Suche in Google Scholar

[9] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar

[10] G. Lü, Average behavior of Fourier coefficients of cusp forms, Proc. Amer. Math. Soc. 137 (2009), no. 6, 1961–1969. 10.1090/S0002-9939-08-09741-4Suche in Google Scholar

[11] K. Matomäki and M. Radziwiłł, Sign changes of Hecke eigenvalues, Geom. Funct. Anal. 25 (2015), no. 6, 1937–1955. 10.1007/s00039-015-0350-7Suche in Google Scholar

[12] K. Matomäki, M. Radziwiłł and T. Tao, Correlations of the von Mangoldt and higher divisor functions I. Long shift ranges, Proc. Lond. Math. Soc. (3) 118 (2019), no. 2, 284–350. 10.1112/plms.12181Suche in Google Scholar

[13] K. Matomäki, M. Radziwiłł and T. Tao, Correlations of the von Mangoldt and higher divisor functions II: Divisor correlations in short ranges, Math. Ann. 374 (2019), no. 1–2, 793–840. 10.1007/s00208-018-01801-4Suche in Google Scholar

[14] S. D. Miller, Cancellation in additively twisted sums on GL ( n ) , Amer. J. Math. 128 (2006), no. 3, 699–729. 10.1353/ajm.2006.0027Suche in Google Scholar

[15] H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Math. 227, Springer, Berlin, 1971. 10.1007/BFb0060851Suche in Google Scholar

[16] H. L. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Reg. Conf. Ser. Math. 84, American Mathematical Society, Providence, 1994. 10.1090/cbms/084Suche in Google Scholar

[17] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory. I. Classical Theory, Cambridge Stud. Adv. Math. 97, Cambridge University, Cambridge, 2007. 10.1017/CBO9780511618314Suche in Google Scholar

[18] K. Ramachandra, A simple proof of the mean fourth power estimate for ζ ( 1 / 2 + i t ) and L ( 1 / 2 + i t , X ) , Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 1 (1974), 81–97. Suche in Google Scholar

[19] R. A. Rankin, Contributions to the theory of Ramanujan’s function τ ( n ) and similar arithmetical functions. II. The order of the Fourier coefficients of integral modular forms, Proc. Cambridge Philos. Soc. 35 (1939), 351–372. 10.1017/S0305004100021095Suche in Google Scholar

[20] R. A. Rankin, Sums of powers of cusp form coefficients, Math. Ann. 263 (1983), no. 2, 227–236. 10.1007/BF01456883Suche in Google Scholar

[21] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43 (1940), 47–50. Suche in Google Scholar

[22] Ian Petrow and Matthew P. Young, The fourth moment of Dirichlet L-functions along a coset and the Weyl bound, preprint (2022), https://arxiv.org/abs/1908.10346. Suche in Google Scholar

[23] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford University, New York, 1986. Suche in Google Scholar

Received: 2020-12-24
Revised: 2022-12-11
Published Online: 2023-01-30
Published in Print: 2023-03-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0359/html
Button zum nach oben scrollen