Startseite Extra-special Leibniz superalgebras
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extra-special Leibniz superalgebras

  • Gelareh Eghbali Kalhor , Behrouz Edalatzadeh EMAIL logo und Ali Reza Salemkar
Veröffentlicht/Copyright: 26. Juli 2023

Abstract

A two-step nilpotent Leibniz superalgebra L is called extra-special if the center and the derived subalgebra of L are equal and both are of dimension one. In this paper, the structure, the capability and the second homology of extra-special Leibniz superalgebras are determined.

MSC 2020: 17B55; 17B30; 17B60

Communicated by Jan Frahm


Acknowledgements

The authors are greatly indebted to the referee, whose valuable criticisms and suggestions led us to rearrange the paper.

References

[1] R. Baer, Groups with preassigned central and central quotient group, Trans. Amer. Math. Soc. 44 (1938), no. 3, 387–412. 10.1090/S0002-9947-1938-1501973-3Suche in Google Scholar

[2] W. Bai and W. Liu, Cohomology of Heisenberg Lie superalgebras, J. Math. Phys. 58 (2017), no. 2, Article ID 021701. 10.1063/1.4975606Suche in Google Scholar

[3] A. Bloh, On a generalization of the concept of Lie algebra, Dokl. Akad. Nauk SSSR 165 (1965), 471–473. Suche in Google Scholar

[4] A. Bloh, Cartan–Eilenberg homology theory for a generalized class of Lie algebras, Dokl. Akad. Nauk SSSR 175 (1967), 824–826. Suche in Google Scholar

[5] A. Bloh, A certain generalization of the concept of Lie algebra, Moskov. Gos. Ped. Inst. Učen. Zap. 375 (1971), 9–20. Suche in Google Scholar

[6] J. M. Casas and M. Ladra, Stem extensions and stem covers of Leibniz algebras, Georgian Math. J. 9 (2002), no. 4, 659–669. Suche in Google Scholar

[7] J. M. Casas and T. Pirashvili, Ten-term exact sequence of Leibniz homology, J. Algebra 231 (2000), no. 1, 258–264. 10.1006/jabr.1999.8364Suche in Google Scholar

[8] B. Edalatzadeh and P. Pourghobadian, Leibniz algebras with small derived ideal, J. Algebra 501 (2018), 215–224. 10.1016/j.jalgebra.2018.01.004Suche in Google Scholar

[9] G. Ellis, On the capability of groups, Proc. Edinb. Math. Soc. (2) 41 (1998), no. 3, 487–495. 10.1017/S0013091500019842Suche in Google Scholar

[10] X. García-Martínez, E. Khmaladze and M. Ladra, Non-abelian tensor product and homology of Lie superalgebras, J. Algebra 440 (2015), 464–488. 10.1016/j.jalgebra.2015.05.027Suche in Google Scholar

[11] X. García-Martínez and M. Ladra, Universal central extensions of Leibniz superalgebras over superdialgebras, Mediterr. J. Math. 14 (2017), no. 2, Paper No. 73. 10.1007/s00009-017-0842-9Suche in Google Scholar

[12] S. N. Hosseini, B. Edalatzadeh and A. R. Salemkar, The non-abelian tensor product and the second homology of Leibniz algebras, Comm. Algebra 48 (2020), no. 2, 759–770. 10.1080/00927872.2019.1659288Suche in Google Scholar

[13] E. Khmaladze, R. Kurdiani and M. Ladra, On the capability of Leibniz algebras, Georgian Math. J. 28 (2021), no. 2, 271–279. 10.1515/gmj-2020-2067Suche in Google Scholar

[14] W. Liu and X. Miao, Multipliers, covers, and stem extensions for Lie superalgebras, Front. Math. China 16 (2021), no. 4, 979–995. 10.1007/s11464-021-0907-8Suche in Google Scholar

[15] J.-L. Loday, Cyclic Homology, Grundlehren Math. Wiss. 301, Springer, Berlin, 1992. 10.1007/978-3-662-21739-9Suche in Google Scholar

[16] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3–4, 269–293. Suche in Google Scholar

[17] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), no. 1, 139–158. 10.1007/BF01445099Suche in Google Scholar

[18] S. Nayak, Multipliers of nilpotent Lie superalgebras, Comm. Algebra 47 (2019), no. 2, 689–705. 10.1080/00927872.2018.1492595Suche in Google Scholar

[19] R. N. Padhan, S. Nayak and K. C. Pati, Detecting capable Lie superalgebras, Comm. Algebra 49 (2021), no. 10, 4274–4290. 10.1080/00927872.2021.1918135Suche in Google Scholar

[20] M. C. Rodríguez-Vallarte, G. Salgado and O. A. Sánchez-Valenzuela, Heisenberg Lie superalgebras and their invariant superorthogonal and supersymplectic forms, J. Algebra 332 (2011), 71–86. 10.1016/j.jalgebra.2011.02.003Suche in Google Scholar

Received: 2022-05-17
Revised: 2023-05-28
Published Online: 2023-07-26
Published in Print: 2023-09-01

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2022-0155/html?lang=de
Button zum nach oben scrollen