Abstract
A subset S of an integral domain R is called a semidomain provided that the pairs
Funding source: National Science Foundation
Award Identifier / Grant number: DMS-1903069
Award Identifier / Grant number: DMS-2213323
Funding statement: During the preparation of this paper, the first author was supported by the NSF awards DMS-1903069 and DMS-2213323, while the second author was supported by the University of Florida Mathematics Department Fellowship.
Acknowledgements
The authors kindly thank an anonymous referee for helpful suggestions.
References
[1] S. Albizu-Campos, J. Bringas and H. Polo, On the atomic structure of exponential Puiseux monoids and semirings, Comm. Algebra 49 (2021), no. 2, 850–863. 10.1080/00927872.2020.1820514Suche in Google Scholar
[2] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra 69 (1990), no. 1, 1–19. 10.1016/0022-4049(90)90074-RSuche in Google Scholar
[3]
D. D. Anderson, D. F. Anderson and M. Zafrullah,
Rings between
[4] D. D. Anderson, D. F. Anderson and M. Zafrullah, Factorization in integral domains. II, J. Algebra 152 (1992), no. 1, 78–93. 10.1016/0021-8693(92)90089-5Suche in Google Scholar
[5] D. F. Anderson and F. Gotti, Bounded and finite factorization domains, Rings, Monoids and Module Theory, Springer Proc. Math. Stat. 382, Springer, Singapore (2021), 7–57. 10.1007/978-981-16-8422-7_2Suche in Google Scholar
[6] N. R. Baeth, S. T. Chapman and F. Gotti, Bi-atomic classes of positive semirings, Semigroup Forum 103 (2021), no. 1, 1–23. 10.1007/s00233-021-10189-8Suche in Google Scholar
[7] N. R. Baeth and F. Gotti, Factorizations in upper triangular matrices over information semialgebras, J. Algebra 562 (2020), 466–496. 10.1016/j.jalgebra.2020.06.031Suche in Google Scholar
[8] J. G. Boynton and J. Coykendall, An example of an atomic pullback without the ACCP, J. Pure Appl. Algebra 223 (2019), no. 2, 619–625. 10.1016/j.jpaa.2018.04.010Suche in Google Scholar
[9] H. Brunotte, On some classes of polynomials with nonnegative coefficients and a given factor, Period. Math. Hungar. 67 (2013), no. 1, 15–32. 10.1007/s10998-013-2367-8Suche in Google Scholar
[10] A. Bu, J. Vulakh and A. Zhao, Length-factoriality and pure irreducibility, Comm. Algebra 51 (2023), no. 9, 3745–3755. 10.1080/00927872.2023.2187629Suche in Google Scholar
[11] F. Campanini and A. Facchini, Factorizations of polynomials with integral non-negative coefficients, Semigroup Forum 99 (2019), no. 2, 317–332. 10.1007/s00233-018-9979-5Suche in Google Scholar
[12] P. Cesarz, S. T. Chapman, S. McAdam and G. J. Schaeffer, Elastic properties of some semirings defined by positive systems, Commutative Algebra and its Applications, Walter de Gruyter, Berlin (2009), 89–101. 10.1515/9783110213188.89Suche in Google Scholar
[13] S. T. Chapman, J. Coykendall, F. Gotti and W. W. Smith, Length-factoriality in commutative monoids and integral domains, J. Algebra 578 (2021), 186–212. 10.1016/j.jalgebra.2021.03.010Suche in Google Scholar
[14] S. T. Chapman, F. Gotti and M. Gotti, Factorization invariants of Puiseux monoids generated by geometric sequences, Comm. Algebra 48 (2020), no. 1, 380–396. 10.1080/00927872.2019.1646269Suche in Google Scholar
[15] P. M. Cohn, Bezout rings and their subrings, Proc. Cambridge Philos. Soc. 64 (1968), 251–264. 10.1017/S0305004100042791Suche in Google Scholar
[16] J. Correa-Morris and F. Gotti, On the additive structure of algebraic valuations of polynomial semirings, J. Pure Appl. Algebra 226 (2022), no. 11, Paper No. 107104. 10.1016/j.jpaa.2022.107104Suche in Google Scholar
[17] J. Coykendall and F. Gotti, On the atomicity of monoid algebras, J. Algebra 539 (2019), 138–151. 10.1016/j.jalgebra.2019.07.033Suche in Google Scholar
[18] J. Coykendall and W. W. Smith, On unique factorization domains, J. Algebra 332 (2011), 62–70. 10.1016/j.jalgebra.2010.10.024Suche in Google Scholar
[19] M. Droste, W. Kuich and H. Vogler, Handbook of Weighted Automata, Springer, Berlin, 2009. 10.1007/978-3-642-01492-5Suche in Google Scholar
[20] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations, Algebraic, Combinatorial and Analytic Theory, Pure Appl. Math. (Boca Raton) 278, Chapman & Hall/CRC, Boca Raton, 2006. 10.1201/9781420003208Suche in Google Scholar
[21] A. Geroldinger and Q. Zhong, A characterization of length-factorial Krull monoids, New York J. Math. 27 (2021), 1347–1374. Suche in Google Scholar
[22] R. Gilmer, Commutative Semigroup Rings, Chic. Lect. Math., University of Chicago, Chicago, 1984. Suche in Google Scholar
[23] R. Gilmer and T. Parker, Divisibility properties in semigroup rings, Michigan Math. J. 21 (1974), 65–86. 10.1307/mmj/1029001210Suche in Google Scholar
[24] J. S. Golan, Semirings and Their Applications, Kluwer Academic, Dordrecht, 1999. 10.1007/978-94-015-9333-5Suche in Google Scholar
[25] F. Gotti, Geometric and combinatorial aspects of submonoids of a finite-rank free commutative monoid, Linear Algebra Appl. 604 (2020), 146–186. 10.1016/j.laa.2020.06.009Suche in Google Scholar
[26] F. Gotti and B. Li, Divisibility and a weak ascending chain condition on principal ideals, preprint (2022), https://arxiv.org/abs/2212.06213. Suche in Google Scholar
[27] F. Gotti and B. Li, Divisibility in rings of integer-valued polynomials, New York J. Math. 28 (2022), 117–139. Suche in Google Scholar
[28] F. Gotti and B. Li, Atomic semigroup rings and the ascending chain condition on principal ideals, Proc. Amer. Math. Soc. 151 (2023), no. 6, 2291–2302. 10.1090/proc/16295Suche in Google Scholar
[29] A. Grams, Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc. 75 (1974), 321–329. 10.1017/S0305004100048532Suche in Google Scholar
[30] F. Halter-Koch, Finiteness theorems for factorizations, Semigroup Forum 44 (1992), no. 1, 112–117. 10.1007/BF02574329Suche in Google Scholar
[31] F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory, Monogr. Textb. Pure Appl. Math. 211, Marcel Dekker, New York, 1998. Suche in Google Scholar
[32] W. J. Heinzer and D. C. Lantz, ACCP in polynomial rings: A counterexample, Proc. Amer. Math. Soc. 121 (1994), no. 3, 975–977. 10.1090/S0002-9939-1994-1232140-9Suche in Google Scholar
[33] N. Jiang, B. Li and S. Zhu, On the primality and elasticity of algebraic valuations of cyclic free semirings, Internat. J. Algebra Comput. 33 (2023), no. 2, 197–210. 10.1142/S021819672350011XSuche in Google Scholar
[34] N. Lebowitz-Lockard, On domains with properties weaker than atomicity, Comm. Algebra 47 (2019), no. 5, 1862–1868. 10.1080/00927872.2018.1524003Suche in Google Scholar
[35] H. Polo, Factorization invariants of the additive structure of exponential Puiseux semirings, J. Algebra Appl. 22 (2023), no. 3, Paper No. 2350077. 10.1142/S0219498823500779Suche in Google Scholar
[36] V. Ponomarenko, Arithmetic of semigroup semirings, Ukrainian Math. J. 67 (2015), no. 2, 243–266. 10.1007/s11253-015-1077-1Suche in Google Scholar
[37] M. Roitman, Polynomial extensions of atomic domains, J. Pure Appl. Algebra 87 (1993), no. 2, 187–199. 10.1016/0022-4049(93)90122-ASuche in Google Scholar
[38] M. Roitman, On the atomic property for power series rings, J. Pure Appl. Algebra 145 (2000), no. 3, 309–319. 10.1016/S0022-4049(98)00089-9Suche in Google Scholar
[39] J.-L. Steffan, Longueurs des décompositions en produits d’éléments irréductibles dans un anneau de Dedekind, J. Algebra 102 (1986), no. 1, 229–236. 10.1016/0021-8693(86)90138-9Suche in Google Scholar
[40] R. J. Valenza, Elasticity of factorization in number fields, J. Number Theory 36 (1990), no. 2, 212–218. 10.1016/0022-314X(90)90074-2Suche in Google Scholar
[41] A. Zaks, Half factorial domains, Bull. Amer. Math. Soc. 82 (1976), no. 5, 721–723. 10.1090/S0002-9904-1976-14130-4Suche in Google Scholar
[42] A. Zaks, Half-factorial-domains, Israel J. Math. 37 (1980), no. 4, 281–302. 10.1007/BF02788927Suche in Google Scholar
[43] A. Zaks, Atomic rings without a.c.c. on principal ideals, J. Algebra 74 (1982), no. 1, 223–231. 10.1016/0021-8693(82)90015-1Suche in Google Scholar
[44] S. Zhu, Factorizations in evaluation monoids of Laurent semirings, Comm. Algebra 50 (2022), no. 6, 2719–2730. 10.1080/00927872.2021.2018449Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- On the arithmetic of polynomial semidomains
- Extra-special Leibniz superalgebras
- Restricted iso-minimum condition
- On the spectral large sieve inequality for symmetric-squares
- Simple 𝔰𝔩(V)-modules which are free over an abelian subalgebra
- Epsilon-strongly graded rings: Azumaya algebras and partial crossed products
- Non-weight modules over N = 1 Lie superalgebras of Block type
- Simpler foundations for the hyperbolic plane
- Characterizations of the mixed radial-angular central Campanato space via the commutators of Hardy type
- The fourth moment of Dirichlet L-functions along the critical line
- Diagonal restriction of Eisenstein series and Kudla–Millson theta lift
- Gibbons’ conjecture for quasilinear elliptic equations involving a gradient term
- Jantzen filtration of Weyl modules for general linear supergroups
- Integral formulas for a class of curvature PDE’s and applications to isoperimetric inequalities and to symmetry problems
Artikel in diesem Heft
- Frontmatter
- On the arithmetic of polynomial semidomains
- Extra-special Leibniz superalgebras
- Restricted iso-minimum condition
- On the spectral large sieve inequality for symmetric-squares
- Simple 𝔰𝔩(V)-modules which are free over an abelian subalgebra
- Epsilon-strongly graded rings: Azumaya algebras and partial crossed products
- Non-weight modules over N = 1 Lie superalgebras of Block type
- Simpler foundations for the hyperbolic plane
- Characterizations of the mixed radial-angular central Campanato space via the commutators of Hardy type
- The fourth moment of Dirichlet L-functions along the critical line
- Diagonal restriction of Eisenstein series and Kudla–Millson theta lift
- Gibbons’ conjecture for quasilinear elliptic equations involving a gradient term
- Jantzen filtration of Weyl modules for general linear supergroups
- Integral formulas for a class of curvature PDE’s and applications to isoperimetric inequalities and to symmetry problems