Startseite Higher depth mock theta functions and q-hypergeometric series
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Higher depth mock theta functions and q-hypergeometric series

  • Joshua Males ORCID logo EMAIL logo , Andreas Mono und Larry Rolen
Veröffentlicht/Copyright: 19. Mai 2021

Abstract

In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.

MSC 2010: 11F37

Communicated by Jan Bruinier


Acknowledgements

We would like to thank Jeremy Lovejoy for insightful discussions on partition-theoretic aspects of this paper. In addition, we would like to thank Kathrin Bringmann for useful comments on an earlier version of this paper. We also thank the referee for many helpful suggestions.

References

[1] S. Alexandrov, S. Banerjee, J. Manschot and B. Pioline, Indefinite theta series and generalized error functions, Selecta Math. (N. S.) 24 (2018), no. 5, 3927–3972. 10.1007/s00029-018-0444-9Suche in Google Scholar

[2] S. Alexandrov and B. Pioline, Black holes and higher depth mock modular forms, Comm. Math. Phys. 374 (2020), no. 2, 549–625. 10.1007/s00220-019-03609-ySuche in Google Scholar

[3] G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook. Part II, Springer, New York, 2009. Suche in Google Scholar

[4] K. Bringmann, Asymptotics for rank partition functions, Trans. Amer. Math. Soc. 361 (2009), no. 7, 3483–3500. 10.1090/S0002-9947-09-04553-XSuche in Google Scholar

[5] K. Bringmann, A. Folsom, K. Ono and L. Rolen, Harmonic Maass Forms and Mock Modular Forms: Theory and Applications, Amer. Math. Soc. Colloq. Publ. 64, American Mathematical Society, Providence, 2017. 10.1090/coll/064Suche in Google Scholar

[6] K. Bringmann, A. Folsom and R. C. Rhoades, Partial theta functions and mock modular forms as q-hypergeometric series, Ramanujan J. 29 (2012), no. 1–3, 295–310. 10.1007/s11139-012-9370-1Suche in Google Scholar

[7] K. Bringmann, J. Kaszian and A. Milas, Higher depth quantum modular forms, multiple Eichler integrals, and 𝔰𝔩3 false theta functions, Res. Math. Sci. 6 (2019), no. 2, Paper No. 20. 10.1007/s40687-019-0182-4Suche in Google Scholar

[8] K. Bringmann, J. Kaszian and A. Milas, Vector-valued higher depth quantum modular forms and higher Mordell integrals, J. Math. Anal. Appl. 480 (2019), no. 2, Article ID 123397. 10.1016/j.jmaa.2019.123397Suche in Google Scholar

[9] K. Bringmann, J. Kaszián and L. Rolen, Indefinite theta functions arising in Gromov–Witten theory of elliptic orbifolds, Camb. J. Math. 6 (2018), no. 1, 25–57. 10.4310/CJM.2018.v6.n1.a2Suche in Google Scholar

[10] K. Bringmann and K. Ono, The f(q) mock theta function conjecture and partition ranks, Invent. Math. 165 (2006), no. 2, 243–266. 10.1007/s00222-005-0493-5Suche in Google Scholar

[11] K. Bringmann and K. Ono, Dyson’s ranks and Maass forms, Ann. of Math. (2) 171 (2010), no. 1, 419–449. 10.4007/annals.2010.171.419Suche in Google Scholar

[12] J. H. Bruinier and J. Funke, On two geometric theta lifts, Duke Math. J. 125 (2004), no. 1, 45–90. 10.1215/S0012-7094-04-12513-8Suche in Google Scholar

[13] F. Calegari, Bloch groups, algebraic K-theory, units, and Nahm’s conjecture, preprint (2017), https://arxiv.org/abs/1712.04887. Suche in Google Scholar

[14] Y.-S. Choi, The basic bilateral hypergeometric series and the mock theta functions, Ramanujan J. 24 (2011), no. 3, 345–386. 10.1007/s11139-010-9269-7Suche in Google Scholar

[15] A. Dabholkar, S. Murthy and D. Zagier, Quantum black holes, wall crossing, and mock modular forms, preprint (2012), https://arxiv.org/abs/1208.4074. Suche in Google Scholar

[16] N. J. Fine, Basic Hypergeometric Series and Applications, Math. Surveys Monogr. 27, American Mathematical Society, Providence, 1988. 10.1090/surv/027Suche in Google Scholar

[17] A. Folsom, Mock and mixed mock modular forms in the lower half-plane, Arch. Math. (Basel) 107 (2016), no. 5, 487–498. 10.1007/s00013-016-0951-xSuche in Google Scholar

[18] S. Garoufalidis and T. T. Q. Lê, Nahm sums, stability and the colored Jones polynomial, Res. Math. Sci. 2 (2015), Article ID 1. 10.1186/2197-9847-2-1Suche in Google Scholar

[19] B. Gordon and R. J. McIntosh, A Survey of Classical Mock Theta Functions, Dev. Math. 23, Springer, New York, 2012. 10.1007/978-1-4614-0028-8_9Suche in Google Scholar

[20] J. Lovejoy and R. Osburn, q-hypergeometric double sums as mock theta functions, Pacific J. Math. 264 (2013), no. 1, 151–162. 10.2140/pjm.2013.264.151Suche in Google Scholar

[21] J. Lovejoy and R. Osburn, Mock theta double sums, Glasg. Math. J. 59 (2017), no. 2, 323–348. 10.1017/S0017089516000197Suche in Google Scholar

[22] J. Males, A family of vector-valued quantum modular forms of depth two, Int. J. Number Theory 16 (2020), no. 1, 29–64. 10.1142/S1793042120500025Suche in Google Scholar

[23] C. Nazaroglu, r-tuple error functions and indefinite theta series of higher-depth, Commun. Number Theory Phys. 12 (2018), no. 3, 581–608. 10.4310/CNTP.2018.v12.n3.a4Suche in Google Scholar

[24] H. M. Srivastava, Some formulas of Srinivasa Ramanujan involving products of hypergeometric functions, Indian J. Math. 29 (1987), no. 1, 91–100. Suche in Google Scholar

[25] M. Vlasenko and S. Zwegers, Nahm’s conjecture: Asymptotic computations and counterexamples, Commun. Number Theory Phys. 5 (2011), no. 3, 617–642. 10.4310/CNTP.2011.v5.n3.a2Suche in Google Scholar

[26] M. Westerholt-Raum, H-harmonic Maaß–Jacobi forms of degree 1, Res. Math. Sci. 2 (2015), Article ID 12. 10.1186/s40687-015-0032-ySuche in Google Scholar

[27] D. Zagier, The dilogarithm function, Frontiers in Number Theory, Physics, and Geometry. II, Springer, Berlin (2007), 3–65. 10.1007/978-3-540-30308-4_1Suche in Google Scholar

[28] D. Zagier, Ramanujan’s mock theta functions and their applications (after Zwegers and Ono–Bringmann), Séminaire Bourbaki. Vol. 2007/2008. Exposés 982-996, Astérisque 326, Société Mathématique de France, Paris (2010), 143–146, Exp. No. 986. Suche in Google Scholar

[29] D. Zagier, Quantum modular forms, Quanta of Maths, Clay Math. Proc. 11, American Mathematical Society, Providence (2010), 659–675. Suche in Google Scholar

[30] S. Zwegers, Mock theta functions, Ph.D. Thesis, Universiteit Utrecht, 2002. Suche in Google Scholar

Received: 2021-01-13
Revised: 2021-03-17
Published Online: 2021-05-19
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2021-0013/html?lang=de
Button zum nach oben scrollen