Startseite The role of the algebraic structure in Wold-type decomposition
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of the algebraic structure in Wold-type decomposition

  • G. A. Bagheri Bardi ORCID logo , Zbigniew Burdak ORCID logo EMAIL logo und Akram Elyaspour
Veröffentlicht/Copyright: 30. Juni 2021

Abstract

In recent works [G. A. Bagheri-Bardi, A. Elyaspour and G. H. Esslamzadeh, Wold-type decompositions in Baer -rings, Linear Algebra Appl. 539 2018, 117–133] and [G. A. Bagheri-Bardi, A. Elyaspour and G. H. Esslamzadeh, The role of algebraic structure in the invariant subspace theory, Linear Algebra Appl. 583 2019, 102–118], the algebraic analogues of the three major decomposition theorems of Wold, Nagy–Foiaş–Langer and Halmos–Wallen were established in the larger category of Baer *-rings. The results have their versions for commuting pairs in von Neumann algebras. In the corresponding proofs, both norm and weak operator topologies are heavily involved. In this work, ignoring topological structures, we give an algebraic approach to obtain them in Baer *-rings.

MSC 2010: 47A05; 47A15; 47A45

Communicated by Siegfried Echterhoff


Funding statement: The second author’s research was supported by the Ministry of Science and Higher Education of the Republic of Poland.

References

[1] G. A. Bagheri-Bardi, A. Elyaspour and G. H. Esslamzadeh, Wold-type decompositions in Baer -rings, Linear Algebra Appl. 539 (2018), 117–133. 10.1016/j.laa.2017.10.024Suche in Google Scholar

[2] G. A. Bagheri-Bardi, A. Elyaspour and G. H. Esslamzadeh, The role of algebraic structure in the invariant subspace theory, Linear Algebra Appl. 583 (2019), 102–118. 10.1016/j.laa.2019.08.022Suche in Google Scholar

[3] S. K. Berberian, Baer *-Rings, Springer, Berlin, 1972. 10.1007/978-3-642-15071-5Suche in Google Scholar

[4] S. K. Berberian, Baer Rings and Baer *-Rings, Springer, Berlin, 2003. Suche in Google Scholar

[5] Z. Burdak, On a decomposition for pairs of commuting contractions, Studia Math. 181 (2007), no. 1, 33–45. 10.4064/sm181-1-3Suche in Google Scholar

[6] Z. Burdak, M. Kosiek, P. Pagacz and M. Sł ociński, A unified approach to the decomposition theorems in Baer *-rings, Results Math. 76 (2021), no. 3, Article ID 131. 10.1007/s00025-021-01415-4Suche in Google Scholar

[7] Z. Burdak, M. Kosiek and M. Sł ociński, The canonical Wold decomposition of commuting isometries with finite dimensional wandering spaces, Bull. Sci. Math. 137 (2013), no. 5, 653–658. 10.1016/j.bulsci.2012.12.007Suche in Google Scholar

[8] X. Catepillán, M. Ptak and W. Szymański, Multiple canonical decompositions of families of operators and a model of quasinormal families, Proc. Amer. Math. Soc. 121 (1994), no. 4, 1165–1172. 10.1090/S0002-9939-1994-1189538-7Suche in Google Scholar

[9] P. R. Halmos and L. J. Wallen, Powers of partial isometries, J. Math. Mech. 19 (1969/1970), 657–663. 10.1512/iumj.1970.19.19054Suche in Google Scholar

[10] I. Kaplansky, Rings of Operators, W. A. Benjamin, New York, 1968. Suche in Google Scholar

[11] D. Popovici, A Wold-type decomposition for commuting isometric pairs, Proc. Amer. Math. Soc. 132 (2004), no. 8, 2303–2314. 10.1090/S0002-9939-04-07331-9Suche in Google Scholar

[12] M. Sł ociński, On the Wold-type decomposition of a pair of commuting isometries, Ann. Polon. Math. 37 (1980), no. 3, 255–262. 10.4064/ap-37-3-255-262Suche in Google Scholar

[13] B. Sz. -Nagy and C. Foiaş, Sur les contractions de l’espace de Hilbert. IV, Acta Sci. Math. (Szeged) 21 (1960), 251–259. Suche in Google Scholar

[14] H. Wold, A Study in the Analysis of Stationary Time Series, Almqvist and Wiksell, Stockholm, 1954. Suche in Google Scholar

Received: 2020-12-28
Revised: 2021-05-18
Published Online: 2021-06-30
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0362/html?lang=de
Button zum nach oben scrollen