Startseite Cancellation in algebraic twisted sums on GL_m
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cancellation in algebraic twisted sums on GL_m

  • Yujiao Jiang und Guangshi Lü EMAIL logo
Veröffentlicht/Copyright: 30. Juni 2021

Abstract

Let π be an automorphic irreducible cuspidal representation of GLm over with unitary central character, and let λπ(n) be its n-th Dirichlet series coefficient. We study short sums of isotypic trace functions associated to some sheaves modulo primes q of bounded conductor, twisted by multiplicative functions λπ(n) and μ(n)λπ(n). We are able to establish non-trivial bounds for these algebraic twisted sums with intervals of length of at least q1/2+ε for an arbitrary fixed ε>0.


Communicated by Freydoon Shahidi


Award Identifier / Grant number: 11801318

Award Identifier / Grant number: 11771252

Award Identifier / Grant number: 12031008

Award Identifier / Grant number: ZR2018QA004

Award Identifier / Grant number: IRT16R43

Funding statement: Y. Jiang is supported by the Natural Science Foundation of Shandong Province (No. ZR2018QA004) and NSFC (No. 11801318). G. Lü is supported in part by NSFC (Nos. 11771252, 12031008), IRT16R43, and Taishan Scholars.

Acknowledgements

The authors are very grateful to the referee for valuable and detailed comments.

References

[1] T. Barnet-Lamb, D. Geraghty, M. Harris and R. Taylor, A family of Calabi–Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci. 47 (2011), no. 1, 29–98. 10.2977/PRIMS/31Suche in Google Scholar

[2] J. Bourgain, P. Sarnak and T. Ziegler, Disjointness of Moebius from horocycle flows, From Fourier Analysis and Number Theory to Radon Transforms and Geometry, Dev. Math. 28, Springer, New York (2013), 67–83. 10.1007/978-1-4614-4075-8_5Suche in Google Scholar

[3] P. Deligne, La conjecture de Weil, Publ. Math. Inst. Hautes Études Sci. 43 (1974), 29–39. 10.1007/BF02684373Suche in Google Scholar

[4] E. Fouvry, E. Kowalski and P. Michel, An inverse theorem for Gowers norms of trace functions over 𝐅p, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 2, 277–295. 10.1017/S030500411300025XSuche in Google Scholar

[5] E. Fouvry, E. Kowalski and P. Michel, Counting sheaves using spherical codes, Math. Res. Lett. 20 (2013), no. 2, 305–323. 10.4310/MRL.2013.v20.n2.a8Suche in Google Scholar

[6] E. Fouvry, E. Kowalski and P. Michel, Algebraic trace functions over the primes, Duke Math. J. 163 (2014), no. 9, 1683–1736. 10.1215/00127094-2690587Suche in Google Scholar

[7] E. Fouvry, E. Kowalski and P. Michel, Trace functions over finite fields and their applications, Colloquium De Giorgi 2013 and 2014, Colloquia 5, Scuola Normale Superiore de Pisa, Pisa (2014), 7–35. 10.1007/978-88-7642-515-8_3Suche in Google Scholar

[8] E. Fouvry, E. Kowalski and P. Michel, Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal. 25 (2015), no. 2, 580–657. 10.1007/s00039-015-0310-2Suche in Google Scholar

[9] E. Fouvry, E. Kowalski and P. Michel, On the exponent of distribution of the ternary divisor function, Mathematika 61 (2015), no. 1, 121–144. 10.1112/S0025579314000096Suche in Google Scholar

[10] E. Fouvry, E. Kowalski, P. Michel, C. S. Raju, J. Rivat and K. Soundararajan, On short sums of trace functions, Ann. Inst. Fourier (Grenoble) 67 (2017), no. 1, 423–449. 10.5802/aif.3087Suche in Google Scholar

[11] S. Gelbart and H. Jacquet, A relation between automorphic representations of GL(2) and GL(3), Ann. Sci. Éc. Norm. Supér. (4) 11 (1978), no. 4, 471–542. 10.24033/asens.1355Suche in Google Scholar

[12] B. Green, A note on multiplicative functions on progressions to large moduli, Proc. Roy. Soc. Edinburgh Sect. A 148 (2018), no. 1, 63–77. 10.1017/S0308210517000191Suche in Google Scholar

[13] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974. Suche in Google Scholar

[14] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, American Mathematical Society, Providence, 2004. 10.1090/coll/053Suche in Google Scholar

[15] Y. Jiang and G. Lü, The Bombieri–Vinogradov theorem on higher rank groups and its applications, Canad. J. Math. 72 (2020), no. 4, 928–966. 10.4153/S0008414X19000129Suche in Google Scholar

[16] Y. Jiang, G. Lü and Z. Wang, Exponential sums with multiplicative coefficients without the Ramanujan conjecture, Math. Ann. 379 (2021), no. 1–2, 589–632. 10.1007/s00208-020-02108-zSuche in Google Scholar

[17] I. Kátai, A remark on a theorem of H. Daboussi, Acta Math. Hungar. 47 (1986), no. 1–2, 223–225. 10.1007/BF01949145Suche in Google Scholar

[18] H. H. Kim, Functoriality for the exterior square of GL4 and the symmetric fourth of GL2, J. Amer. Math. Soc. 16 (2003), no. 1, 139–183. 10.1090/S0894-0347-02-00410-1Suche in Google Scholar

[19] H. H. Kim and F. Shahidi, Functorial products for GL2×GL3 and the symmetric cube for GL2, Ann. of Math. (2) 155 (2002), no. 3, 837–893. 10.2307/3062134Suche in Google Scholar

[20] M. Korolev and I. Shparlinski, Sums of algebraic trace fucntions twisted by arithmetic fucntions, Pacific J. Math. 304 (2020), 505–522. 10.2140/pjm.2020.304.505Suche in Google Scholar

[21] E. Kowalski, Y. Lin, P. Michel and W. Sawin, Periodic twists of GL3-automorphic forms, Forum Math. Sigma 8 (2020), Paper No. e15. 10.1017/fms.2020.7Suche in Google Scholar

[22] E. Kowalski, P. Michel and W. Sawin, Stratification and averaging for exponential sums: Bilinear forms with generalized Kloosterman sums, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 1453–1530. 10.2422/2036-2145.201805_002Suche in Google Scholar

[23] X. Li, Upper bounds on L-functions at the edge of the critical strip, Int. Math. Res. Not. IMRN 2010 (2010), 727–755. 10.1093/imrn/rnp148Suche in Google Scholar

[24] J. Liu and P. Sarnak, The Möbius function and distal flows, Duke Math. J. 164 (2015), no. 7, 1353–1399. 10.1215/00127094-2916213Suche in Google Scholar

[25] W. Luo, Z. Rudnick and P. Sarnak, On Selberg’s eigenvalue conjecture, Geom. Funct. Anal. 5 (1995), no. 2, 387–401. 10.1007/978-3-0348-9102-8_9Suche in Google Scholar

[26] J. Newton and J. A. Thorne, Symmetric power functoriality for holomorphic modular forms, preprint (2019), https://arxiv.org/abs/1912.11261. Suche in Google Scholar

[27] D. Ramakrishnan, Modularity of the Rankin–Selberg L-series, and multiplicity one for SL(2), Ann. of Math. (2) 152 (2000), no. 1, 45–111. 10.2307/2661379Suche in Google Scholar

[28] O. Ramaré, Modified truncated Perron formulae, Ann. Math. Blaise Pascal 23 (2016), no. 1, 109–128. 10.5802/ambp.356Suche in Google Scholar

[29] Z. Rudnick and P. Sarnak, Zeros of principal L-functions and random matrix theory, Duke Math. J. 81 (1996), 269–322. 10.1215/S0012-7094-96-08115-6Suche in Google Scholar

[30] P. Sarnak, Three lectures on the Möbius function, randomness and dynamics, preprint, http://publications.ias.edu/sites/default/files/MobiusFunctionsLectures(2).pdf. Suche in Google Scholar

[31] P. Shiu, A Brun–Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math. 313 (1980), 161–170. 10.1515/crll.1980.313.161Suche in Google Scholar

[32] K. Soundararajan and J. Thorner, Weak subconvexity without a Ramanujan hypothesis, Duke Math. J. 168 (2019), no. 7, 1231–1268. 10.1215/00127094-2018-0065Suche in Google Scholar

[33] Z. Wang, Möbius disjointness for analytic skew products, Invent. Math. 209 (2017), no. 1, 175–196. 10.1007/s00222-016-0707-zSuche in Google Scholar

[34] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen, Math. Ann. 143 (1961), 75–102. 10.1007/BF02280301Suche in Google Scholar

[35] E. Wirsing, Das asymptotische Verhalten von Summen über multiplikative Funktionen. II, Acta Math. Acad. Sci. Hungar. 18 (1967), 411–467. 10.1007/BF02280301Suche in Google Scholar

Received: 2020-09-08
Revised: 2021-03-25
Published Online: 2021-06-30
Published in Print: 2021-07-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0252/html?lang=de
Button zum nach oben scrollen