Startseite A non-commutative differential module approach to Alexander modules
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A non-commutative differential module approach to Alexander modules

  • Aristides Kontogeorgis ORCID logo EMAIL logo und Panagiotis Paramantzoglou
Veröffentlicht/Copyright: 12. Januar 2021

Abstract

The theory of R. Crowell on derived modules is approached within the theory of non-commutative differential modules. We also seek analogies to the theory of cotangent complex from differentials in the commutative ring setting. Finally, we give examples motivated from the theory of Galois coverings of curves.

MSC 2010: 57M12; 20F34; 13N05

Communicated by Frederick R. Cohen


References

[1] M. André, Homologie des algèbres commutatives, Grundlehren Math. Wiss. 206, Springer, Berlin, 1974. 10.1007/978-3-642-51449-4Suche in Google Scholar

[2] J. S. Birman, Braids, Links, and Mapping Class Groups, Ann. of Math. Stud. 82, Princeton University, Princeton, 1974, 10.1515/9781400881420Suche in Google Scholar

[3] N. Bourbaki, Algebra I. Chapters 1–3, Elem. Math. (Berlin), Springer, Berlin, 1998. Suche in Google Scholar

[4] R. H. Crowell, The derived module of a homomorphism, Adv. Math. 6 (1971), 210–238. 10.1016/0001-8708(71)90016-8Suche in Google Scholar

[5] D. Eisenbud, Commutative Algebra, Grad. Texts in Math. 150, Springer, New York, 1995. 10.1007/978-1-4612-5350-1Suche in Google Scholar

[6] R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. 10.2307/1969736Suche in Google Scholar

[7] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977. 10.1007/978-1-4757-3849-0Suche in Google Scholar

[8] A. Hoang Duc, Snake lemma in category of groups, preprint (2011), https://mathoverflow.net/q/53249. Suche in Google Scholar

[9] Y. Ihara, Profinite braid groups, Galois representations and complex multiplications, Ann. of Math. (2) 123 (1986), no. 1, 43–106. 10.2307/1971352Suche in Google Scholar

[10] Y. Ihara, Arithmetic analogues of braid groups and Galois representations, Braids (Santa Cruz 1986), Contemp. Math. 78, American Mathematical Society, Providence (1988), 245–257. 10.1090/conm/078/975083Suche in Google Scholar

[11] S. Iyengar, André–Quillen homology of commutative algebras, Interactions Between Homotopy Theory and Algebra, Contemp. Math. 436, American Mathematical Society, Providence (2007), 203–234. 10.1090/conm/436/08410Suche in Google Scholar

[12] H. Kodani, M. Morishita and Y. Terashima, Arithmetic topology in Ihara theory, Publ. Res. Inst. Math. Sci. 53 (2017), no. 4, 629–688. 10.4171/PRIMS/53-4-6Suche in Google Scholar

[13] H. Komatsu, The module of differentials of a noncommutative ring extension, International Symposium on Ring Theory (Kyongju 1999), Trends Math., Birkhäuser, Boston (2001), 171–177. 10.1007/978-1-4612-0181-6_12Suche in Google Scholar

[14] A. Kontogeorgis and P. Paramantzoglou, Galois action on homology of generalized Fermat curves, Q. J. Math. 71 (2020), no. 4, 1377–1417. 10.1093/qmath/haaa038Suche in Google Scholar

[15] A. Kontogeorgis and P. Paramantzoglou, Group actions on cyclic covers of the projective line, Geom. Dedicata 207 (2020), 311–334. 10.1007/s10711-019-00501-wSuche in Google Scholar

[16] M. Morishita, Knots and Primes: An Introduction to Arithmetic Topology, Springer, London, 2011. 10.1007/978-1-4471-2158-9Suche in Google Scholar

[17] D. Quillen, On the (co-)homology of commutative rings, Applications of Categorical Algebra (New York 1968), Proc. Sympos. Pure Math. 17, American Mathematical Society, Providence (1970), 65–87. 10.1090/pspum/017/0257068Suche in Google Scholar

[18] J.-P. Serre, Local Fields, Springer, New York, 1979. 10.1007/978-1-4757-5673-9Suche in Google Scholar

[19] nLab authors, five lemma, http://ncatlab.org/nlab/show/five. Suche in Google Scholar

Received: 2020-08-15
Revised: 2020-12-02
Published Online: 2021-01-12
Published in Print: 2021-03-01

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/forum-2020-0224/html?lang=de
Button zum nach oben scrollen